Numpy 模块的应用
数据分析三剑客:
Numpy, Pandas, Matplotlib
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
一、 使用np.array()创建
一维数据创建
import numpy as np
arr_1 = np.array([1,2,3,4,5])
arr_1
- 二维数组创建
np.array([[1,2.2,3],[4,5,6]])
注意:
numpy默认ndarray的所有元素的类型是相同的
如果传进来的列表中包含不同的类型,则统一为同一类型,
优先级:str>float>int
使用matplotlib.pyplot获取一个numpy数组,数据来源于一张图片
import matplotlib.pyplot as plt
img_arr = plt.imread('./bobo.jpg')
img_arr
# 显示图片
plt.imshow(img_arr)
# 修改 操作该numpy数据,该操作会同步到图片中
img_arr = img_arr - 100
# 查看数组的 维度
img_arr.shape
(626, 413, 3)
使用np的routines函数创建
包含以下常见创建方法:
# 创建全是 1 的二位数组 5 行 6 列
np.ones(shape=(5,6),dtype=int)
# 全是 0 的
np.zeros(shape, dtype=None, order='C')
# 指定 全是 999 的二位数组 np.full(shape, fill_value, dtype=None, order='C')
np.full((5,5),fill_value=999)
# np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 等差数列
np.linspace(1,100,num=50)
#
# np.arange([start, ]stop, [step, ]dtype=None)
np.arange(0,100,2)
# 创建都是整数的 随机数
# np.random.randint(low, high=None, size=None, dtype='l')
np.random.seed(4) #固定随机性
np.random.randint(0,100,size=(5,6))
# np.random.randn(d0, d1, ..., dn) 标准正太分布
np.random.randn(4,5,6)
# np.random.random(size=None) 生成0到1的随机数
np.random.random(size=(3,3))
二、ndarray的属性
- 4个必记参数:
- ndim:维度
- shape:形状(各维度的长度)
- size:总长度
- dtype:元素类型
img_arr.size
# 775614
img_arr.dtype
# dtype('uint8')
type(img_arr)
# numpy.ndarray
img_arr.ndim
# 3
三、ndarray的基本操作
1. 索引
一维与列表完全一致 多维时同理
np.random.seed(1)
arr = np.random.randint(0,100,size=(5,5))
arr
# 根据索引修改数据
arr[1][2]
2. 切片
一维与列表完全一致 多维时同理
arr[0:2] #获取二维数组前两行
arr[:,0:2] #逗号左边是 行 右边是 #获取二维数组前两行列
#获取二维数组前两行和前两列数据
arr[0:2,0:2]
# 将数据反转,例如[1,2,3]---->[3,2,1]
#将数组的行倒序
arr[::-1]
#列倒序
arr[:,::-1]
#全部倒序
arr[::-1,::-1]
#将图片进行全倒置操作
plt.imshow(img_arr[:,::-1,:])
plt.imshow(img_arr[::-1,::-1,::-1])
3. 变形
使用arr.reshape()函数,注意参数是一个tuple!
基本使用
1.将一维数组变形成多维数组
# 变成二维数组
arr_1.reshape((-1,5))
# 2.将多维数组变形成一维数组
arr_1 = arr.reshape((25,))
# 图片倒置
plt.imshow(img_arr.reshape((-1,))[::-1].reshape((626,413,3)))
4. 级联
np.concatenate()
1.一维,二维,多维数组的级联,实际操作中级联多为二维数组
# 3 个二维数组连接起来 横向
np.concatenate((arr,arr,arr),axis=1)
# 将两个二维数组 连接 纵向
np.concatenate((arr,arr1),axis=0)
# .合并两张照片
img_arr_3 = np.concatenate((img_arr,img_arr,img_arr),axis=1)
img_arr_9 = np.concatenate((img_arr_3,img_arr_3,img_arr_3),axis=0)
plt.imshow(img_arr_9)
np.hstack与np.vstack
# 横向合并
np.vstack((arr,arr))
# 纵向合并
np.hstack((arr,arr))
级联需要注意的点:
- 级联的参数是列表:一定要加中括号或小括号
- 维度必须相同
- 形状相符:在维度保持一致的前提下,如果进行横向(axis=1)级联,必须保证进行级联的数组行数保持一致。如果进行纵向(axis=0)级联,必须保证进行级联的数组列数保持一致。
- 可通过axis参数改变级联的方向
5. 切分
- 与级联类似,三个函数完成切分工作:
- np.split(arr,行/列号,轴):参数2是一个列表类型
- np.vsplit
- np.hsplit
# 按0 轴向的 400 切割 取第 0 个
plt.imshow(np.split(img_arr,[400],axis=0)[0])\
# 根据 切片切割 行 切 60-400 列切 100-300 颜色不动
plt.imshow(img_arr[60:400,100:330,:])
6. 副本
所有赋值运算不会为ndarray的任何元素创建副本。对赋值后的对象的操作也对原来的对象生效。
可使用copy()函数创建副本
a = arr.copy()
a[2][2] = 666
arr
# 原 数组不动
四、ndarray的聚合操作
1. 求和np.sum
arr.sum(axis=1) # 求 1 横向轴向的和
2. 最大最小值:np.max/ np.min
3.平均值:np.mean()
arr.std(axis=0)
# array([23.80420131, 35.94440151, 26.96961253, 21.81192334, 31.18589425])
3. 其他聚合操作
Function Name NaN-safe Version Description
np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true
np.power 幂运算
六、ndarray的排序
1. 快速排序
np.sort()与ndarray.sort()都可以,但有区别:
- np.sort() 不改变输入
- ndarray.sort() 本地处理,不占用空间,但改变输入
np.sort(arr,axis=0)
arr.sort(axis=0)
Numpy 模块的应用的更多相关文章
- Python:基本运算、基本函数(包括复数)、Math模块、NumPy模块
基本运算 x**2 : x^2 若x是mat矩阵,那就表示x内每个元素求平方 inf:表示正无穷 逻辑运算符:and,or,not 字典的get方法 a.get(k,d) 1 1 get相当于一条if ...
- 【Python 数据分析】Numpy模块
Numpy模块可以高效的处理数据,提供数组支持.很多模块都依赖他,比如:pandas.scipy.matplotlib 安装Numpy 首先到网站:https://www.lfd.uci.edu/~g ...
- python numpy模块
目录 numpy模块 一维数组 二维数组(用的最多的) 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的元素的替换 通过函数方法创建多维数组 矩阵的运算 点乘和转置(了解) 点乘必须 m*n ...
- Python及bs4、lxml、numpy模块包的安装
http://blog.csdn.net/tiantiancsdn/article/details/51046490(转载) Python及bs4.lxml.numpy模块包的安装 Python 的安 ...
- numpy模块(对矩阵的处理,ndarray对象)
6.12自我总结 一.numpy模块 import numpy as np约定俗称要把他变成np 1.模块官方文档地址 https://docs.scipy.org/doc/numpy/referen ...
- Python3:numpy模块中的argsort()函数
Python3:numpy模块中的argsort()函数 argsort函数是Numpy模块中的函数: >>> import numpy >>> help(nu ...
- 3 numpy模块
Numpy 什么是Numpy:Numeric Python Numpy模块是Python的一种开源的数值计算扩展. 1 一个强大的N维数组对象Array ...
- Day 19 numpy 模块
numpy 模块(多维数组) import numpy as np arr=np.array([1,2,3,4],[5,6,7,8]) print(arr) #[[1 2 3 4] #[5 6 7 8 ...
- Pathon中numpy模块
目录 numpy模块 切割矩阵 矩阵元素替换 矩阵的合并 通过函数创建矩阵 fromstring/fromfunctions 矩阵的运算 常用矩阵运函数 矩阵的点乘 矩阵的逆 矩阵的其他操作 nump ...
- 开发技术--Numpy模块
开发|Numpy模块 Numpy模块是数据分析基础包,所以还是很重要的,耐心去体会Numpy这个工具可以做什么,我将从源码与 地产呢个实现方式说起,祝大家阅读愉快! Numpy模块提供了两个重要对象: ...
随机推荐
- Android Studio 使用Menu
首先在res目录下创建一个文件夹名字随意 在对创建的文件夹下在创建一个菜单 名字随意 参看布局 可以看到你的菜单 可以选择添加是么样的菜单 接着要到主活动中重写 onCreateOptionsMenu ...
- c# 创建,加载,修改XML文档
using System.Xml.Linq; static void Main(string[] args) { XDocument xDocument = new XDocument(new XEl ...
- mysql中的prepare介绍和应用
简单的用set或者declare语句定义变量,然后直接作为sql的表名是不行的,mysql会把变量名当作表名.在其他的sql数据库中也是如此,mssql的解决方法是将整条sql语句作为变量,其中穿插变 ...
- [angularjs] angularjs系列笔记(四)控制器
Scope作用域 Scope作用域是应用在HTML视图和Js控制器之间的纽带 Scope是一个对象,有可用的属性和方法 根作用域 所有的应用都有一个$rootScope,它可以作用在ng-app指令包 ...
- Java 数组声明的几种方式
Java数组定义声明的几种方法: 1. 类型名称[] 变量名=new 类型名称[length]; 2.类型名称[] 变量名={?,?,?}; 3.类型名称[] 变量名=new 类型名称[]{?,?,? ...
- Netty 系列六(编解码器).
一.概念 网络传输的单位是字节,如何将应用程序的数据转换为字节,以及将字节转换为应用程序的数据,就要说到到我们该篇介绍的编码器和解码器. 将应用程序的数据转换为网络格式,以及将网络格式转换为应用程序的 ...
- php环境安装
Windows安装 下载php压缩包, http://php.net/downloads.php, 一定要下载Windows版本的呦 将压缩包解压到指定目录下: 创建配置文件, 其中有两个配置文件在根 ...
- RPC调用与GC垃圾回收
RPC调用 多个服务协同完成一次业务时,由于业务约束(如红包不符合使用条件.账户余额不足等).系统故障(如网络或系统超时或中断.数据库约束不满足等),都可能造成服务处理过程在任何一步无法继续,使数据处 ...
- Springboot使用Filter以及踩过的坑
Springboot使用Filter以及踩过的坑 在Springboot中使用Filter有两种方式,注解方式,注册bean方式 一.注解@WebFilter 1.实现Filter接口(javax.s ...
- 8.异常_EJ
第57条: 只针对异常情况才使用异常 异常是为了在异常情况下使用而设计的,不要将它们用于普通的控制流,也不要编写迫使它们这么做的API. 第58条: 对可恢复的情况使用受检异常,对编程错误使用运行时异 ...