thair

好,这个naive的东西因为只有三元,很好求解。只要把每个数之前小的L[i]与之后大的R[i]求一下即可。

求两次逆序对即可。那么答案便是∑(L[i]*R[i]);

对于更高元的,胡雨菲写的是要用DP

那么先放水的一批的代码

(就这还洛谷蓝题,我直接给的黄题)

 #include <cstdio>
#include <algorithm>
#define lowbit(a) (a&(-a))
using namespace std;
const int N = ;
int x[N],tree[N],n,a[N],L[N],R[N]; void add(int x,int v)
{
if(x==) return;
for(int i=x;i<=n;i+=lowbit(i)) tree[i]+=v;
return;
}
int getsum(int x)
{
if(x==) return ;
int ans=;
for(int i=x;i>;i-=lowbit(i)) ans+=tree[i];
return ans;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]),x[i]=a[i];
sort(x+,x+n+);
int k=;
for(int i=;i<=n;i++) if(x[i]!=x[i-]) x[++k]=x[i]; for(int i=;i<=n;i++)
{
int p=lower_bound(x+,x+k+,a[i])-x;
L[i]=getsum(p-);
add(p,);
}
fill(tree+,tree+n+,);
for(int i=n;i>=;i--)
{
int p=lower_bound(x+,x+k+,a[i])-x;
R[i]=(n-i)-getsum(p);
add(p,);
}
long long ans=;
for(int i=;i<=n;i++) ans+=L[i]*R[i];
printf("%lld",ans);
return ;
}

AC代码:

P1637 三元上升子序列的更多相关文章

  1. 洛谷P1637 三元上升子序列

    P1637 三元上升子序列 48通过 225提交 题目提供者该用户不存在 标签云端 难度提高+/省选- 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 为什么超时啊 a的数据比较 ...

  2. 【luogu P1637 三元上升子序列】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1637 BIT + 离散化. 读题得数据规模需离散化.BIT开不到longint这么大的数组. 对于题目所求的 ...

  3. Luogu P1637 三元上升子序列【权值线段树】By cellur925

    题目传送门 emmm..不开结构体的线段树真香! 首先我们知道"三元上升子序列"的个数就是对于序列中的每个数,**它左边比他小的数*它右边比他大的数**.但是如何快速求出这两个数? ...

  4. 洛谷p1637 三元上升子序列(树状数组

    题目描述 Erwin最近对一种叫"thair"的东西巨感兴趣... 在含有n个整数的序列a1,a2......an中, 三个数被称作"thair"当且仅当i&l ...

  5. 【洛谷P1637】三元上升子序列

    题目大意:给定一个长度为 N 的序列,求有多少个三元组满足 \(i<j<k,a_i<a_j<a_k\). 题解:这是一类二维偏序问题,与逆序对问题类似. 对于序列中每个点来说, ...

  6. 【Luogu P1637】 三元上升子序列

    对于每个数$a_i$,易得它对答案的贡献为 它左边比它小的数的个数$\times$它右边比它大的数的个数. 可以离散化后再处理也可以使用动态开点的线段树. 我使用了动态开点的线段树,只有需要用到这个节 ...

  7. [LeetCode] Increasing Triplet Subsequence 递增的三元子序列

    Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...

  8. LeetCode:递增的三元子序列【334】

    LeetCode:递增的三元子序列[334] 题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i ...

  9. Leetcode 334.递增的三元子序列

    递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n- ...

随机推荐

  1. 网络编程--使用UDP发送接收数据

    package com.zhangxueliang.udp; import java.io.IOException; import java.net.DatagramPacket; import ja ...

  2. 和docket的第一次亲密接触

    很久很久以前,第一次听说docker时,感觉很高大上,同时自我感觉会很难.所以一直没有详细了解.前一段时间偶尔看到关于docker的详细介绍,于是乎来了兴趣.自已折腾了一下,发现不是想象中的那么难. ...

  3. idea -> Error during artifact deployment. See server log for details.

    用idea导入eclipse工程,运行时,报Error during artifact deployment. See server log for details. 谷歌,最后发现是最新  tomc ...

  4. DOSD用scratch的方式训练通用目标检测,性能很高

    推荐一篇今年ICCV上基于DenseNet的general object detection的工作.这是目前已知的第一篇在完全脱离ImageNet pre-train模型的情况下使用deep mode ...

  5. hdu1878-并查集,欧拉回路

    纯裸题..写着方便理解... 题意:判断一个无向图是否存在欧拉回路... 解题思路:并查集判断一下是否联通,然后再判断一下点的度数是否为偶数就行了: #include<iostream> ...

  6. 使用JSch远程执行shell命令

    package com.nihaorz.jsch; import com.jcraft.jsch.Channel; import com.jcraft.jsch.ChannelExec; import ...

  7. IntelliJ cannot log in to GitHub上传github报错解决

    重装系统,新装的Intellij IDEA上新建的项目上传github失败,报错: invalid authentication token ... 此处多为本地git用户的用户名/邮箱,与之前设置的 ...

  8. Codeforces963C Frequency of String 【字符串】【AC自动机】

    题目大意: 给一个串s和很多模式串,对每个模式串求s的一个最短的子串使得这个子串中包含至少k个该模式串. 题目分析: 均摊分析,有sqrt(n)种长度不同的模式串,所以有关的串只有msqrt(n)种. ...

  9. 用递归方法解决汉诺塔问题(Recursion Hanoi Tower Python)

    汉诺塔问题源于印度的一个古老传说:梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.梵天命令婆罗门把圆盘按大小顺序重新摆放在另一根柱子上,并且规定小圆盘上不能放 ...

  10. git回滚部分文件到某个版本

    reset 命令只能将整个版本的代码一起回滚,需要使用checkout 命令,可以还原部分文件到某一版本 格式为:git checkout [<branch>] [file] 1.首先使用 ...