http://acm.timus.ru/problem.aspx?space=1&num=1132

题意:

求 x^2 ≡ n mod p  p是质数 的 解

本题中n>=1

特判p=2,接下来求当p是奇素数时的解

引理1:

引理2:方程有解当且仅当

定理:

设a满足 不是模p的二次剩余,

无解,

那么是二次剩余方程的解

#include<cstdio>
#include<cstdlib>
#include<algorithm> using namespace std; typedef long long LL; int w; struct T
{
int p,d;
}; int mod(LL a,int p)
{
a%=p;
if(a<) a+=p;
return a;
} int Pow(int a,int b,int p)
{
int res=;
for(;b;a=1LL*a*a%p,b>>=)
if(b&) res=1LL*res*a%p;
return res;
} //求勒让德符号
int Legendre(int a,int p)
{
return Pow(a,p->>,p);
} //二次域上的乘法
T mul(T a,T b,int p)
{
T ans;
ans.p=(1LL*a.p*b.p%p+1LL*a.d*b.d%p*w%p)%p;
ans.d=(1LL*a.p*b.d%p+1LL*a.d*b.p%p)%p;
return ans;
} //二次域上的快速幂
T power(T a,int b,int p)
{
T ans;
ans.p=;
ans.d=;
for(;b;a=mul(a,a,p),b>>=)
if(b&) ans=mul(ans,a,p);
return ans;
} int solve(int n,int p)
{
if(p==) return ;
if(Legendre(n,p)+==p) return -;
int a;
LL t;
while()
{
a=rand()%p;
t=1LL*a*a-n;
w=mod(t,p);
if(Legendre(w,p)+==p) break;
}
T tmp;
tmp.p=a;
tmp.d=;
T ans=power(tmp,p+>>,p);
return ans.p;
} int main()
{
int t;
scanf("%d",&t);
int n,p;
int a,b;
while(t--)
{
scanf("%d%d",&n,&p);
n%=p;
a=solve(n,p);
if(a==-)
{
puts("No root");
continue;
}
b=p-a;
if(a>b) swap(a,b);
if(a==b) printf("%d\n",a);
else printf("%d %d\n",a,b);
}
}

Timus 1132 Square Root(二次剩余)的更多相关文章

  1. Timus 1132 Square Root(二次剩余 解法2)

    不理解,背板子 #include<cstdio> using namespace std; int Pow(int a,int b,int p) { ; ) ) res=1LL*a*res ...

  2. URAL 1132 Square Root(二次剩余定理)题解

    题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...

  3. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  5. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  6. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  8. Square Root

    Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...

  9. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

随机推荐

  1. sql里的正则表达式

    SQL语句还可以搭配正则表达式作为查询条件,很是有用. REGEXP_LIKE(匹配)REGEXP_INSTR (包含)REGEXP_REPLACE(替换)REGEXP_SUBSTR(提取) 表 1: ...

  2. Android 简单天气预报

    IDE: Android studio3.1.2 界面: activity_main.xml

  3. 【hdu 6161】Big binary tree(二叉树、dp)

    多校9 1001 hdu 6161 Big binary tree 题意 有一个完全二叉树.编号i的点值是i,操作1是修改一个点的值为x,操作2是查询经过点u的所有路径的路径和最大值.10^5个点,1 ...

  4. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  5. W10笔记本电脑弄成WIFI

    用网线连接的笔记本弄成WIFI供手机上网.以前是买了一个随身 WIFI,可以当网卡使用.后来使用命令 // 建立WIFI netsh wlan set hostednetwork mode=allow ...

  6. Nginx+Keepalived部署

    -----------ReProxy-------------------------Client-----------192.168.56.200 nginx+keepalived 192.168. ...

  7. poj3179 Corral the Cows

    论水题与难题的差距:在于一个upper_bound 那么,这题一看就很显然了:因为答案满足二分性质所以我们二分. 然后我们再建造一个二维前缀和,每次判断的时候怎么办呢? 我先以为是贪心:选择以每个点为 ...

  8. spring MVC 如何接收前台传入的JSON对象数组并处理

    spring MVC 如何接收前台传入的JSON对象数组 主要方法: (主要用到的包是 net.sf.json  即:json-lib-2.3-jdk15.jar 完整相关jar包: commons- ...

  9. NOIP 普及组 2012 寻宝(思维???)

    传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 一开始用暴力查找下一个要去的房间,超时了,emmmmm....... 然后,就稍 ...

  10. grub.conf解析

    一.grub简介系统启动引导管理器,是在计算机启动后运行的第一个程序,他是用来负责加载.传输控制到操作系统的内核,一旦把内核挂载,系统引导管理器的任务就算完成退出,系统引导的其它部份,比如系统的初始化 ...