[LOJ 6288]猫咪[CF 700E]Cool Slogans
[LOJ 6288]猫咪[CF 700E]Cool Slogans
题意
给定一个字符串 \(T\), 求一个最大的 \(K\) 使得存在 \(S_1,S_2,\dots,S_k\) 满足 \(S_1\) 是 \(T\) 的子串且 \(\forall 1\le i< k\) 有 \(S_{i+1}\) 是 \(S\) 的双子串.
其中双子串的定义是: 若 \(a\) 在 \(b\) 的至少两个不同位置作为子串出现则 \(a\) 为 \(b\) 的双子串. 出现位置可以重叠.
\(|T|\le 2\times 10^5\).
题解
考试的时候被沙雕题目描述搞得迷迷糊糊的结果没发现是原题←菜的真实
显然对于每个子串我们可以这个子串里挑一个答案最大且的双子串作为这个子串的答案.
我们发现当我们挑出一个子串 \(S_1\) 后, 可以通过对左右端点进行适当缩减来刚好卡到"每一个双子串都是上一个串的一个border"的程度. 因为如果出现了不是border的情况, 可以把前面所有的 \(S_i\) 全都缩短, 不难发现这样并不会导致答案变劣.
那么实际上要计算的就是每个子串最多迭代几个border. 考虑在SAM上DP. SAM的结点上只能控制右端点, 左端点是一个区间, 不难发现只要搞右端点相同就可以了. 线段树合并搞出每个点的 right 集合, 判断一下答案最大的祖先是否能对当前点做出贡献就可以了. 能做出贡献就 \(+1\), 否则就不加.
至于判断, 因为当前 right 集合对应的长度最大为 len 的子串都是完全一样的, 所以随便取一个位置判断就可以了.
参考代码
#include <bits/stdc++.h>
const int MAXN=4e5+10;
struct Node{
int l;
int r;
int cnt;
Node* lch;
Node* rch;
Node(int,int);
void Insert(int);
int Query(int,int);
};
Node* N[MAXN];
int n;
int cnt=1;
int root=1;
int last=1;
int s[MAXN];
int prt[MAXN];
int len[MAXN];
int val[MAXN];
int pos[MAXN];
int tprt[MAXN];
char str[MAXN];
std::map<char,int> chd[MAXN];
int Extend(char);
Node* Merge(Node*,Node*);
int main(){
scanf("%s",str+1);
n=strlen(str+1);
for(int i=1;i<=n;i++){
int x=Extend(str[i]);
N[x]->Insert(pos[x]=i);
}
for(int i=1;i<=cnt;i++)
s[i]=i;
std::stable_sort(s+1,s+cnt+1,[](int a,int b){return len[a]>len[b];});
for(int i=1;i<cnt;i++){
N[prt[s[i]]]=Merge(N[prt[s[i]]],N[s[i]]);
pos[prt[s[i]]]=pos[s[i]];
}
int ans=0;
for(int i=cnt-1;i>=1;i--){
int p=s[i];
if(prt[p]==root){
val[p]=1;
tprt[p]=p;
}
else{
assert(N[p]->Query(pos[p],pos[p]));
int last=tprt[prt[p]];
int cnt=N[last]->Query(pos[p]-len[p]+(len[prt[last]]+1),pos[p]);
if(cnt>=2){
val[p]=val[last]+1;
tprt[p]=p;
}
else{
val[p]=val[last];
tprt[p]=last;
}
}
ans=std::max(ans,val[p]);
}
printf("%d\n",ans);
return 0;
}
void Node::Insert(int x){
++this->cnt;
if(this->l!=this->r){
int mid=(this->l+this->r)>>1;
if(x<=mid){
if(this->lch==NULL)
this->lch=new Node(this->l,mid);
this->lch->Insert(x);
}
else{
if(this->rch==NULL)
this->rch=new Node(mid+1,this->r);
this->rch->Insert(x);
}
}
}
int Extend(char x){
int p=last;
int np=++cnt;
N[last=np]=new Node(1,n);
len[np]=len[p]+1;
while(p&&!chd[p].count(x))
chd[p][x]=np,p=prt[p];
if(!p)
prt[np]=root;
else{
int q=chd[p][x];
if(len[q]==len[p]+1)
prt[np]=q;
else{
int nq=++cnt;
N[nq]=new Node(1,n);
len[nq]=len[p]+1;
chd[nq]=chd[q];
prt[nq]=prt[q];
prt[q]=nq;
prt[np]=nq;
while(p&&chd[p][x]==q)
chd[p][x]=nq,p=prt[p];
}
}
return np;
}
Node* Merge(Node* a,Node* b){
if(a==NULL)
return b;
if(b==NULL)
return a;
Node* cur=new Node(a->l,b->r);
cur->cnt=a->cnt+b->cnt;
cur->lch=Merge(a->lch,b->lch);
cur->rch=Merge(a->rch,b->rch);
return cur;
}
int Node::Query(int l,int r){
if(l<=this->l&&this->r<=r)
return this->cnt;
else{
int ans=0;
if(this->lch&&l<=this->lch->r)
ans+=this->lch->Query(l,r);
if(this->rch&&this->rch->l<=r)
ans+=this->rch->Query(l,r);
return ans;
}
}
Node::Node(int l,int r):l(l),r(r),cnt(0),lch(NULL),rch(NULL){}

[LOJ 6288]猫咪[CF 700E]Cool Slogans的更多相关文章
- NABCD模型(猫咪记单词)
项目需求分析与建议-NABCD模型(猫咪记单词) N (Need 需求) 对于现在的学生,尤其是大学生来说,学习英语是一件非常重要的事.我们有四级六级托福雅思等各种各样的英语方面的考试.而学习英语 ...
- [TYVJ] P1423 GF和猫咪的玩具
GF和猫咪的玩具 描述 Description GF同学和猫咪得到了一个特别的玩具,这个玩具由n个金属环(编号为1---n),和m条绳索组成,每条绳索连接两个不同的金属环,并且长度相同.GF左手拿起金 ...
- 猫咪记单词Beta版使用说明
猫咪记单词Beta版使用说明 一.项目背景 英语四级考试.六级考试.托福.雅思等英语方面的考试是现在大学生必须面对的问题.同时因为学生对手机的使用越来越频繁,而且仅仅通过书本背诵单词又比较无聊坚持的时 ...
- Cal Cat for Mac(猫咪控日历工具)安装
1.软件简介 Cal Cat 是 macOS 系统上一款猫咪控日历工具,可以将系统内置的日历工具美化成猫咪风格的日历,超级可爱的猫咪可是猫咪控的最爱了,喜欢的朋友快快用上吧. 加州猫是一个桌面集 ...
- 猫咪记单词——NABCD模型分析
N ——Need 需求:学习英语是一件非常重要的事.面对各种各样的考试,学习英语,最重要的就是词汇量,背单词是提高词汇量的最直接的方法,但是单纯的背单词太单调.寻找一些合适的,更易于接受的背单词学习英 ...
- 算法 PK 猫咪 | 章鱼保罗后继竟然是只猫?
简评:一只名叫阿喀琉斯(Achilles)的白猫一边小声叫着,一边慵懒地在分别插有俄罗斯和沙特阿拉伯国旗的食盆间踱步.这只看起来并不出众的小猫住在俄罗斯圣彼得堡埃尔米塔日博物馆(State Hermi ...
- TYVJ1423 GF和猫咪的玩具
Description: GF同学和猫咪得到了一个特别的玩具,这个玩具由n个金属环(编号为1---n),和m条绳索组成,每条绳索连接两个不同的金属环,并且长度相同.GF左手拿起金属环L,猫咪右手(或者 ...
- COGS 1191. [Tyvj Feb11] 猫咪的进化
★ 输入文件:neko.in 输出文件:neko.out 简单对比时间限制:1 s 内存限制:128 MB [背景] 对于一只猫咪来说,它是有九条命的.但是并不是所有的猫咪都是这样,只 ...
- CTF 两道web整数溢出题目(猫咪银行和ltshop)
①猫咪银行: (2018中科大hackgame) 一开始给十个CTB,而flag需要20个CTB,我们需要理财赚够20个. 理财是只能买入TDSU才可以获得收益.我们先上来直接把CTB全部换成TDSU ...
随机推荐
- Python解释器和Python集成环境小结
目录 一.执行Python程序的两种方式 1.1 交互式 1.2 命令行式 二.执行Python程序的两种IDE 2.1 Pycharm 2.2 Jupyter 一.执行Python程序的两种方式 1 ...
- 基于Django的Rest Framework框架的视图组件
本文目录 一 基本视图 二 mixin类和generice类编写视图 三 使用generics 下ListCreateAPIView,RetrieveUpdateDestroyAPIView 四 使用 ...
- 从零开始的微信小程序入门教程(一)
之前说要和同事一起开发个微信小程序项目,现在也在界面设计,功能定位等需求上开始实施了.所以在还未正式写项目前,打算在空闲时间学习下小程序.本意是在学习过程中结合实践整理出一个较为入门且不是很厚的教程, ...
- 【Linux命令】工作目录切换命令(pwd,cd,ls)
目录 pwd显示当前的工作路径 cd切换工作目录 ls显示目录中文件信息 一.pwd命令 pwd命令用于显示当前的工作路径. 格式: pwd [选项] 参数: -L,--logical,显示当前的路径 ...
- 【linux】切换到root用户,并重置root用户密码
1.切换当前用户 到 root用户 sudo -i 2.重置root用户密码 sudo passwd root
- java基础(29):JDBC、DBUtils
1. JDBC 1.1 JDBC概述 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问 ...
- python+java蓝桥杯ACM日常算法题训练(一)10基础题
目录 1.简单的a+b 2.第一个HelloWorld程序! 3.三个数最大值 4.密码破译 5.母牛的故事 6.7.8.9.10 @(这里写自定义目录标题) 算法题训练网站:http://www.d ...
- JS基础语法---函数练习part1---5个练习
练习1:求两个数字的和:获取任意的两个数字的和 function getSum(x, y) { return x + y; } console.log(getSum(10, 20)); 练习2:求1- ...
- 微信小程序 setData 如何修改动态数据?
最近这段时间在写微信小程序,有一个页面需要动态修改 data 中的数据,而这里似乎是个坑. 1.正常修改 正常修改很简单,当触发 change 事件时,数据和页面都会同时发生改变.这个也不用多说,很简 ...
- Java的包
Java 包 Java面向对象的核心的概念:类.接口.抽象类.对象:[主体] 包的定义: 指的是一个程序的目录,在最早的时候,如果要开发一个程序,只需要定义一个Java文件,而后在这个文件中编写所需要 ...