K8S入门系列之集群二进制部署-->master篇(二)
组件版本和配置策略
组件版本
Kubernetes 1.16.2
Docker 19.03-ce
Etcd 3.3.17 https://github.com/etcd-io/etcd/releases/
Flanneld 0.11.0 https://github.com/coreos/flannel/releases/
插件:
镜像仓库:
docker registry
harbor
主要配置策略
kube-apiserver:
使用 keepalived 和 haproxy 实现 3 节点高可用;
关闭非安全端口 8080 和匿名访问;
在安全端口 6443 接收 https 请求;
严格的认证和授权策略 (x509、token、RBAC);
开启 bootstrap token 认证,支持 kubelet TLS bootstrapping;
使用 https 访问 kubelet、etcd,加密通信;kube-controller-manager:
3 节点高可用;主备备
关闭非安全端口,在安全端口 10252 接收 https 请求;
使用 kubeconfig 访问 apiserver 的安全端口;
自动 approve kubelet 证书签名请求 (CSR),证书过期后自动轮转;
各 controller 使用自己的 ServiceAccount 访问 apiserver;kube-scheduler:
3 节点高可用;主备备
使用 kubeconfig 访问 apiserver 的安全端口;kubelet:
使用 kubeadm 动态创建 bootstrap token,也可以在 apiserver 中静态配置;
使用 TLS bootstrap 机制自动生成 client 和 server 证书,过期后自动轮转;
在 KubeletConfiguration 类型的 JSON 文件配置主要参数;
关闭只读端口,在安全端口 10250 接收 https 请求,对请求进行认证和授权,拒绝匿名访问和非授权访问;
使用 kubeconfig 访问 apiserver 的安全端口;kube-proxy:
使用 kubeconfig 访问 apiserver 的安全端口;
在 KubeProxyConfiguration 类型的 JSON 文件配置主要参数;
使用 ipvs 代理模式;集群插件:
1. 系统初始化
1.01 系统环境&&基本环境配置
[root@localhost ~]# uname -aLinux localhost.localdomain 4.18.0-80.11.2.el8_0.x86_64 #1 SMP Tue Sep 24 11:32:19 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux[root@localhost ~]# cat /etc/redhat-releaseCentOS Linux release 8.0.1905 (Core)
1.02 修改各个节点的对应hostname, 并分别写入/etc/hosts
hostnamectl set-hostname k8s-master01...# 写入hosts--> 注意是 >> 表示不改变原有内容追加!cat>> /etc/hosts <<EOF192.168.2.201 k8s-master01192.168.2.202 k8s-master02192.168.2.203 k8s-master03192.168.2.11 k8s-node01192.168.2.12 k8s-node02EOF
1.03 安装依赖包和常用工具
yum install wget vim yum-utils net-tools tar chrony curl jq ipvsadm ipset conntrack iptables sysstat libseccomp -y
1.04 所有节点关闭firewalld, dnsmasq, selinux以及swap
# 关闭防火墙并清空防火墙规则systemctl disable firewalld && systemctl stop firewalld && systemctl status firewalldiptables -F && iptables -X && iptables -F -t nat && iptables -X -t natiptables -P FORWARD ACCEP# 关闭dnsmasq否则可能导致docker容器无法解析域名!(centos8不存在!)systemctl disable --now dnsmasq# 关闭selinux --->selinux=disabled 需重启生效!setenforce 0 && sed -i 's/^SELINUX=.*/SELINUX=disabled/' /etc/selinux/config# 关闭swap --->注释掉swap那一行, 需重启生效!swapoff -a && sed -i '/ swap / s/^\(.*\)$/# \1/g' /etc/fstab
1.05 所有节点设置时间同步
timedatectl set-timezone Asia/Shanghaitimedatectl set-local-rtc 0yum install chrony -ysystemctl enable chronyd && systemctl start chronyd && systemctl status chronyd
1.06 调整内核参数, k8s必备参数!
# 先加载模块modprobe br_netfilter
cat> kubernetes.conf <<EOFnet.bridge.bridge-nf-call-iptables=1net.bridge.bridge-nf-call-ip6tables=1net.ipv6.conf.all.disable_ipv6=1net.netfilter.nf_conntrack_max = 6553500net.nf_conntrack_max = 6553500net.ipv4.tcp_max_tw_buckets = 4096EOF
- net.bridge.bridge-nf-call-iptables=1 二层的网桥在转发包时也会被iptables的FORWARD规则所过滤
- net.ipv6.conf.all.disable_ipv6=1 禁用整个系统所有的ipv6接口, 预防触发docker的bug
- net.netfilter.nf_conntrack_max 这个默认值是65535,当服务器上的连接超过这个数的时候,系统会将数据包丢掉,直到小于这个值或达到过期时间net.netfilter.nf_conntrack_tcp_timeout_established,默认值432000,5天。期间的数据包都会丢掉。
- net.ipv4.tcp_max_tw_buckets 这个默认值18000,服务器TIME-WAIT状态套接字的数量限制,如果超过这个数量, 新来的TIME-WAIT套接字会直接释放。过多的TIME-WAIT影响服务器性能,根据服务自行设置.
cp kubernetes.conf /etc/sysctl.d/kubernetes.confsysctl -p /etc/sysctl.d/kubernetes.conf
1.07 所有节点创建k8s工作目录并设置环境变量!
# 在每台机器上创建目录:mkdir -p /opt/k8s/{bin,cert,script,kube-apiserver,kube-controller-manager,kube-scheduler,kubelet,kube-proxy}mkdir -p /opt/etcd/{bin,cert}mkdir -p /opt/lib/etcdmkdir -p /opt/flanneld/{bin,cert}mkdir -p /root/.kubemkdir -p /var/log/kubernetes# 在每台机器上添加环境变量:sh -c "echo 'PATH=/opt/k8s/bin:/opt/etcd/bin:/opt/flanneld/bin:$PATH:$HOME/bin:$JAVA_HOME/bin' >> /etc/profile.d/k8s.sh"source /etc/profile.d/k8s.sh
1.08 无密码 ssh 登录其它节点(为了部署方便!!!)
生成秘钥对
[root@k8s-master01 ~]# ssh-keygen
将自己的公钥发给其他服务器
[root@k8s-master01 ~]# ssh-copy-id root@k8s-master01[root@k8s-master01 ~]# ssh-copy-id root@k8s-master02[root@k8s-master01 ~]# ssh-copy-id root@k8s-master03
2. 创建CA根证书和密钥
- 为确保安全, kubernetes 系统各组件需要使用 x509 证书对通信进行加密和认证。
- CA (Certificate Authority) 是自签名的根证书,用来签名后续创建的其它证书。
2.01 安装cfssl工具集
[root@k8s-master01 ~]# wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64[root@k8s-master01 ~]# mv cfssl_linux-amd64 /opt/k8s/bin/cfssl[root@k8s-master01 ~]# wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64[root@k8s-master01 ~]# mv cfssljson_linux-amd64 /opt/k8s/bin/cfssljson[root@k8s-master01 ~]# wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64[root@k8s-master01 ~]# mv cfssl-certinfo_linux-amd64 /opt/k8s/bin/cfssl-certinfochmod +x /opt/k8s/bin/*
2.02 创建根证书CA
- CA 证书是集群所有节点共享的,只需要创建一个CA证书,后续创建的所有证书都由它签名。
2.02.01 创建配置文件
- CA 配置文件用于配置根证书的使用场景 (profile) 和具体参数 (usage,过期时间、服务端认证、客户端认证、加密等),后续在签名其它证书时需要指定特定场景。
[root@k8s-master01 ~]# cd /opt/k8s/cert/
[root@k8s-master01 cert]# cat> ca-config.json <<EOF{"signing": {"default": {"expiry": "876000h"},"profiles": {"kubernetes": {"usages": ["signing","key encipherment","server auth","client auth"],"expiry": "876000h"}}}}EOF
- signing :表示该证书可用于签名其它证书,生成的 ca.pem 证书中CA=TRUE;
- server auth :表示 client 可以用该该证书对 server 提供的证书进行验证;
- client auth :表示 server 可以用该该证书对 client 提供的证书进行验证;
2.02.02 创建证书签名请求文件
[root@k8s-master01 cert]# cat > ca-csr.json <<EOF{"CN": "kubernetes","key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "k8s","OU": "steams"}]}EOF
- CN: Common Name ,kube-apiserver 从证书中提取该字段作为请求的用户名(User Name),浏览器使用该字段验证网站是否合法;
- O: Organization ,kube-apiserver 从证书中提取该字段作为请求用户所属的组(Group);
- kube-apiserver 将提取的 User、Group 作为 RBAC 授权的用户标识;
2.02.03 生成CA证书和密钥
[root@k8s-master01 cert]# cfssl gencert -initca ca-csr.json | cfssljson -bare ca# 查看是否生成![root@k8s-master01 cert]# lsca-config.json ca.csr ca-csr.json ca-key.pem ca.pem
2.02.04 分发证书文件
- 简单脚本, 注意传参! 后期想写整合脚本的话可以拿来用!
- 将生成的 CA 证书、秘钥文件、配置文件拷贝到所有节点的/opt/k8s/cert 目录下:
[root@k8s-master01 cert]# vi /opt/k8s/script/scp_k8s_cacert.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/cert/ca*.pem /opt/k8s/cert/ca-config.json root@${master_ip}:/opt/k8s/certdone
[root@k8s-master01 cert]# bash /opt/k8s/script/scp_k8s_cacert.sh 192.168.2.201 192.168.2.202 192.168.2.203
3. 部署etcd集群
- etcd 是基于Raft的分布式key-value存储系统,由CoreOS开发,常用于服务发现、共享配置以及并发控制(如leader选举、分布式锁等)
- kubernetes 使用 etcd 存储所有运行数据。所以部署三节点高可用!
3.01 下载二进制文件
[root@k8s-master01 ~]# wget https://github.com/etcd-io/etcd/releases/download/v3.3.17/etcd-v3.3.17-linux-amd64.tar.gz[root@k8s-master01 ~]# tar -xvf etcd-v3.3.17-linux-amd64.tar.gz
3.02 创建etcd证书和密钥
- etcd集群要与k8s-->apiserver通信, 所以需要用证书签名验证!
3.02.01 创建证书签名请求
[root@k8s-master01 cert]# cat > /opt/etcd/cert/etcd-csr.json <<EOF{"CN": "etcd","hosts": ["127.0.0.1","192.168.2.201","192.168.2.202","192.168.2.203"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "k8s","OU": "steams"}]}EOF
- hosts 字段指定授权使用该证书的 etcd 节点 IP 或域名列表,这里将 etcd 集群的三个节点 IP 都列在其中
3.02.02 生成证书和私钥
[root@k8s-master01 ~]# cfssl gencert -ca=/opt/k8s/cert/ca.pem -ca-key=/opt/k8s/cert/ca-key.pem -config=/opt/k8s/cert/ca-config.json -profile=kubernetes /opt/etcd/cert/etcd-csr.json | cfssljson -bare /opt/etcd/cert/etcd# 查看是否生成![root@k8s-master01 ~]# ls /opt/etcd/cert/*etcd.csr etcd-csr.json etcd-key.pem etcd.pem
3.02.03 分发生成的证书, 私钥和etcd安装文件到各etcd节点
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_etcd.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /root/etcd-v3.3.17-linux-amd64/etcd* root@${master_ip}:/opt/etcd/binssh root@${master_ip} "chmod +x /opt/etcd/bin/*"scp /opt/etcd/cert/etcd*.pem root@${master_ip}:/opt/etcd/cert/done
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_etcd.sh 192.168.2.201 192.168.2.202 192.168.2.203
3.03 创建etcd的systemd unit模板及etcd配置文件
创建etcd的systemd unit模板
[root@k8s-master01 ~]# vi /opt/etcd/etcd.service.template[Unit]Description=Etcd ServerAfter=network.targetAfter=network-online.targetWants=network-online.targetDocumentation=https://github.com/coreos[Service]User=rootType=notifyWorkingDirectory=/opt/lib/etcd/ExecStart=/opt/etcd/bin/etcd \--data-dir=/opt/lib/etcd \--name ##ETCD_NAME## \--cert-file=/opt/etcd/cert/etcd.pem \--key-file=/opt/etcd/cert/etcd-key.pem \--trusted-ca-file=/opt/k8s/cert/ca.pem \--peer-cert-file=/opt/etcd/cert/etcd.pem \--peer-key-file=/opt/etcd/cert/etcd-key.pem \--peer-trusted-ca-file=/opt/k8s/cert/ca.pem \--peer-client-cert-auth \--client-cert-auth \--listen-peer-urls=https://##MASTER_IP##:2380 \--initial-advertise-peer-urls=https://##MASTER_IP##:2380 \--listen-client-urls=https://##MASTER_IP##:2379,http://127.0.0.1:2379 \--advertise-client-urls=https://##MASTER_IP##:2379 \--initial-cluster-token=etcd-cluster-0 \--initial-cluster=etcd0=https://192.168.2.201:2380,etcd1=https://192.168.2.202:2380,etcd2=https://192.168.2.203:2380 \--initial-cluster-state=newRestart=on-failureRestartSec=5LimitNOFILE=65536[Install]WantedBy=multi-user.target
- 本示例用脚本替换变量-->##ETCD_NAME##, ##MASTER_IP##
- WorkingDirectory 、 --data-dir:指定工作目录和数据目录为/opt/lib/etcd ,需在启动服务前创建这个目录;
- --name :指定各个节点名称,当 --initial-cluster-state 值为new时, --name的参数值必须位于--initial-cluster 列表中;
- --cert-file 、 --key-file:etcd server 与 client 通信时使用的证书和私钥;
- --trusted-ca-file:签名 client 证书的 CA 证书,用于验证 client 证书;
- --peer-cert-file 、 --peer-key-file:etcd 与 peer 通信使用的证书和私钥;
- --peer-trusted-ca-file:签名 peer 证书的 CA 证书,用于验证 peer 证书;
3.04 为各节点创建和分发etcd systemd unit文件
[root@k8s-master01 ~]# vi /opt/k8s/script/etcd_service.shETCD_NAMES=("etcd0" "etcd1" "etcd2")MASTER_IPS=("$1" "$2" "$3")#替换模板文件中的变量,为各节点创建systemd unit文件for (( i=0; i < 3; i++ ));dosed -e "s/##ETCD_NAME##/${ETCD_NAMES[i]}/g" -e "s/##MASTER_IP##/${MASTER_IPS[i]}/g" /opt/etcd/etcd.service.template > /opt/etcd/etcd-${MASTER_IPS[i]}.servicedone#分发生成的systemd unit和etcd的配置文件:for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/etcd/etcd-${master_ip}.service root@${master_ip}:/etc/systemd/system/etcd.servicedone
[root@k8s-master01 ~]# bash /opt/k8s/script/etcd_service.sh 192.168.2.201 192.168.2.202 192.168.2.203
3.05 启动etcd服务
[root@k8s-master01 ~]# vi /opt/k8s/script/etcd.shMASTER_IPS=("$1" "$2" "$3")#启动 etcd 服务for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"ssh root@${master_ip} "systemctl daemon-reload && systemctl enable etcd && systemctl start etcd"done#检查启动结果,确保状态为 active (running)for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"ssh root@${master_ip} "systemctl status etcd|grep Active"done#验证服务状态,输出均为healthy 时表示集群服务正常for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"ETCDCTL_API=3 /opt/etcd/bin/etcdctl \--endpoints=https://${master_ip}:2379 \--cacert=/opt/k8s/cert/ca.pem \--cert=/opt/etcd/cert/etcd.pem \--key=/opt/etcd/cert/etcd-key.pem endpoint healthdone
[root@k8s-master01 ~]# bash /opt/k8s/script/etcd.sh 192.168.2.201 192.168.2.202 192.168.2.203
4. 部署flannel网络
- kubernetes要求集群内各节点(包括master节点)能通过Pod网段互联互通。flannel使用vxlan技术为各节点创建一个可以互通的Pod网络,使用的端口为UDP 8472,需要开放该端口(如公有云 AWS 等)。
- flannel第一次启动时,从etcd获取Pod网段信息,为本节点分配一个未使用的 /24段地址,然后创建 flannel.1(也可能是其它名称) 接口。
- flannel将分配的Pod网段信息写入/run/flannel/docker文件,docker后续使用这个文件中的环境变量设置docker0网桥。
4.01 下载flannel二进制文件
[root@k8s-master01 ~]# wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz[root@k8s-master01 ~]# mkdir flanneld[root@k8s-master01 ~]# tar -xvf flannel-v0.11.0-linux-amd64.tar.gz -C flanneld
4.02 创建flannel证书和密钥
- flannel从etcd集群存取网段分配信息,而etcd集群启用了双向x509证书认证,所以需要flanneld 生成证书和私钥。
4.02.01 创建证书签名请求
[root@k8s-master01 ~]# cat > /opt/flanneld/cert/flanneld-csr.json <<EOF{"CN": "flanneld","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "k8s","OU": "steams"}]}EOF
- 该证书只会被 kubectl 当做 client 证书使用,所以 hosts 字段为空;
4.02.02 生成证书和密钥
[root@k8s-master01 ~]# cfssl gencert -ca=/opt/k8s/cert/ca.pem -ca-key=/opt/k8s/cert/ca-key.pem -config=/opt/k8s/cert/ca-config.json -profile=kubernetes /opt/flanneld/cert/flanneld-csr.json | cfssljson -bare /opt/flanneld/cert/flanneld[root@k8s-master01 ~]# ll /opt/flanneld/cert/flanneld*flanneld.csr flanneld-csr.json flanneld-key.pem flanneld.pem
4.02.03 将flanneld二进制文件和生成的证书和私钥分发到所有节点(包含node节点!)
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_flanneld.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /root/flanneld/flanneld /root/flanneld/mk-docker-opts.sh root@${master_ip}:/opt/flanneld/bin/ssh root@${master_ip} "chmod +x /opt/flanneld/bin/*"scp /opt/flanneld/cert/flanneld*.pem root@${master_ip}:/opt/flanneld/certdone
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_flanneld.sh 192.168.2.201 192.168.2.202 192.168.2.203
4.03 向etcd 写入集群Pod网段信息
- flanneld当前版本(v0.11.0)不支持etcd v3,故需使用etcd v2 API写入配置key和网段数据;
- 特别注意etcd版本匹配!!!
向etcd 写入集群Pod网段信息(一个节点操作就可以了!)
[root@k8s-master01 ~]# ETCDCTL_API=2 etcdctl \--endpoints="https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379" \--ca-file=/opt/k8s/cert/ca.pem \--cert-file=/opt/flanneld/cert/flanneld.pem \--key-file=/opt/flanneld/cert/flanneld-key.pem \set /atomic.io/network/config '{"Network":"10.30.0.0/16","SubnetLen": 24, "Backend": {"Type": "vxlan"}}'# 返回如下信息(写入的Pod网段"Network"必须是/16 段地址,必须与kube-controller-manager的--cluster-cidr参数值一致){"Network":"10.30.0.0/16","SubnetLen": 24, "Backend": {"Type": "vxlan"}}
4.04 创建flanneld的systemd unit文件
[root@k8s-master01 ~]# vi /opt/flanneld/flanneld.service.template[Unit]Description=Flanneld overlay address etcd agentAfter=network.targetAfter=network-online.targetWants=network-online.targetAfter=etcd.serviceBefore=docker.service[Service]Type=notifyExecStart=/opt/flanneld/bin/flanneld \-etcd-cafile=/opt/k8s/cert/ca.pem \-etcd-certfile=/opt/flanneld/cert/flanneld.pem \-etcd-keyfile=/opt/flanneld/cert/flanneld-key.pem \-etcd-endpoints=https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379 \-etcd-prefix=/atomic.io/network \-iface=eth0ExecStartPost=/opt/flanneld/bin/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/dockerRestart=on-failure[Install]WantedBy=multi-user.targetRequiredBy=docker.service
- mk-docker-opts.sh脚本将分配给flanneld的Pod子网网段信息写入/run/flannel/docker文件,后续docker启动时使用这个文件中的环境变量配置docker0 网桥;
- flanneld使用系统缺省路由所在的接口与其它节点通信,对于有多个网络接口(如内网和公网)的节点,可以用-iface参数指定通信接口,如上面的eth1接口;
- flanneld 运行时需要 root 权限;
4.05 分发flanneld systemd unit文件到所有节点,启动并检查flanneld服务
[root@k8s-master01 ~]# vi /opt/k8s/script/flanneld_service.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"#分发 flanneld systemd unit 文件到所有节点scp /opt/flanneld/flanneld.service.template root@${master_ip}:/etc/systemd/system/flanneld.service#启动 flanneld 服务ssh root@${master_ip} "systemctl daemon-reload && systemctl enable flanneld && systemctl restart flanneld"#检查启动结果ssh root@${master_ip} "systemctl status flanneld|grep Active"done
[root@k8s-master01 ~]# bash /opt/k8s/script/flanneld_service.sh 192.168.2.201 192.168.2.202 192.168.2.203
4.06 检查分配给各 flanneld 的 Pod 网段信息
# 查看集群 Pod 网段(/16)[root@k8s-master01 ~]# ETCDCTL_API=2 etcdctl \--endpoints="https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379" \--ca-file=/opt/k8s/cert/ca.pem \--cert-file=/opt/flanneld/cert/flanneld.pem \--key-file=/opt/flanneld/cert/flanneld-key.pem \get /atomic.io/network/config# 输出:{"Network":"10.30.0.0/16","SubnetLen": 24, "Backend": {"Type": "vxlan"}}# 查看已分配的 Pod 子网段列表(/24)[root@k8s-master01 ~]# ETCDCTL_API=2 etcdctl \--endpoints="https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379" \--ca-file=/opt/k8s/cert/ca.pem \--cert-file=/opt/flanneld/cert/flanneld.pem \--key-file=/opt/flanneld/cert/flanneld-key.pem \ls /atomic.io/network/subnets# 输出:/atomic.io/network/subnets/10.30.34.0-24/atomic.io/network/subnets/10.30.41.0-24/atomic.io/network/subnets/10.30.7.0-24# 查看某一 Pod 网段对应的节点 IP 和 flannel 接口地址[root@k8s-master01 ~]# ETCDCTL_API=2 etcdctl \--endpoints="https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379" \--ca-file=/opt/k8s/cert/ca.pem \--cert-file=/opt/flanneld/cert/flanneld.pem \--key-file=/opt/flanneld/cert/flanneld-key.pem \get /atomic.io/network/subnets/10.30.34.0-24# 输出:{"PublicIP":"192.168.2.202","BackendType":"vxlan","BackendData":{"VtepMAC":"e6:b2:85:07:9f:c0"}}# 验证各节点能通过 Pod 网段互通, 注意输出的pod网段![root@k8s-master01 ~]# vi /opt/k8s/script/ping_flanneld.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"#在各节点上部署 flannel 后,检查是否创建了 flannel 接口(名称可能为 flannel0、flannel.0、flannel.1 等)ssh ${master_ip} "/usr/sbin/ip addr show flannel.1|grep -w inet"#在各节点上 ping 所有 flannel 接口 IP,确保能通ssh ${master_ip} "ping -c 1 10.30.34.0"ssh ${master_ip} "ping -c 1 10.30.41.0"ssh ${master_ip} "ping -c 1 10.30.7.0"done# 运行![root@k8s-master01 ~]# bash /opt/k8s/script/ping_flanneld.sh 192.168.2.201 192.168.2.202 192.168.2.203
5. 部署kubectl命令行工具
- kubectl 是 kubernetes 集群的命令行管理工具
- kubectl 默认从 ~/.kube/config 文件读取 kube-apiserver 地址、证书、用户名等信息,如果没有配置,执行 kubectl 命令时可能会出错:
- 本文档只需要部署一次,生成的 kubeconfig 文件与机器无关。
5.01 下载kubectl二进制文件, 并分发所有节点(包含node!)
- kubernetes-server-linux-amd64.tar.gz包含所有组件!
[root@k8s-master01 ~]# wget https://dl.k8s.io/v1.16.2/kubernetes-server-linux-amd64.tar.gz[root@k8s-master01 ~]# tar -zxvf kubernetes-server-linux-amd64.tar.gz
[root@k8s-master01 ~]# vi /opt/k8s/script/kubectl_environment.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /root/kubernetes/server/bin/kubectl root@${master_ip}:/opt/k8s/bin/done
[root@k8s-master01 ~]# bash /opt/k8s/script/kubectl_environment.sh 192.168.2.201 192.168.2.202 192.168.2.203
5.02 创建 admin 证书和私钥
- kubectl 与 apiserver https 安全端口通信,apiserver 对提供的证书进行认证和授权。
- kubectl 作为集群的管理工具,需要被授予最高权限。这里创建具有最高权限的admin 证书。
创建证书签名请求
[root@k8s-master01 ~]# cat > /opt/k8s/cert/admin-csr.json <<EOF{"CN": "admin","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "system:masters","OU": "steams"}]}EOF
- O 为 system:masters ,kube-apiserver 收到该证书后将请求的 Group 设置为system:masters;
- 预定义的 ClusterRoleBinding cluster-admin 将 Group system:masters 与Role cluster-admin 绑定,该 Role 授予所有 API的权限;
- 该证书只会被 kubectl 当做 client 证书使用,所以 hosts 字段为空;
生成证书和私钥
[root@k8s-master01 ~]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \-ca-key=/opt/k8s/cert/ca-key.pem \-config=/opt/k8s/cert/ca-config.json \-profile=kubernetes /opt/k8s/cert/admin-csr.json | cfssljson -bare /opt/k8s/cert/admin[root@k8s-master01 ~]# ll /opt/k8s/cert/admin*admin.csr admin-csr.json admin-key.pem admin.pem
5.03 创建和分发 kubeconfig 文件
5.03.01 创建kubeconfig文件
- kubeconfig 为 kubectl 的配置文件,包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书;
step.1 设置集群参数, --server=${KUBE_APISERVER}, 指定IP和端口; 本文使用的是haproxy的VIP和端口;如果没有haproxy代理,就用实际服务的IP和端口!
[root@k8s-master01 ~]# kubectl config set-cluster kubernetes \--certificate-authority=/opt/k8s/cert/ca.pem \--embed-certs=true \--server=https://192.168.2.210:8443 \--kubeconfig=/root/.kube/kubectl.kubeconfig
step.2 设置客户端认证参数
[root@k8s-master01 ~]# kubectl config set-credentials kube-admin \--client-certificate=/opt/k8s/cert/admin.pem \--client-key=/opt/k8s/cert/admin-key.pem \--embed-certs=true \--kubeconfig=/root/.kube/kubectl.kubeconfig
step.3 设置上下文参数
[root@k8s-master01 ~]# kubectl config set-context kube-admin@kubernetes \--cluster=kubernetes \--user=kube-admin \--kubeconfig=/root/.kube/kubectl.kubeconfig
step.4设置默认上下文
[root@k8s-master01 ~]# kubectl config use-context kube-admin@kubernetes --kubeconfig=/root/.kube/kubectl.kubeconfig
--certificate-authority :验证 kube-apiserver 证书的根证书;
--client-certificate 、 --client-key :刚生成的 admin 证书和私钥,连接 kube-apiserver 时使用;
--embed-certs=true :将 ca.pem 和 admin.pem 证书内容嵌入到生成的kubectl.kubeconfig 文件中(不加时,写入的是证书文件路径);
5.03.02 验证kubeconfig文件
[root@k8s-master01 ~]# kubectl config view --kubeconfig=/root/.kube/kubectl.kubeconfigapiVersion: v1clusters:- cluster:certificate-authority-data: DATA+OMITTEDserver: https://192.168.2.210:8443name: kubernetescontexts:- context:cluster: kubernetesuser: kube-adminname: kube-admin@kubernetescurrent-context: kube-admin@kuberneteskind: Configpreferences: {}users:- name: kube-adminuser:client-certificate-data: REDACTEDclient-key-data: REDACTED
5.03.03 分发 kubeclt 和kubeconfig 文件,分发到所有使用kubectl 命令的节点
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_kubectl_config.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /root/kubernetes/server/bin/kubectl root@${master_ip}:/opt/k8s/bin/ssh root@${master_ip} "chmod +x /opt/k8s/bin/*"scp /root/.kube/kubectl.kubeconfig root@${master_ip}:/root/.kube/configdone
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_kubectl_config.sh 192.168.2.201 192.168.2.202 192.168.2.203
6. 部署master节点
kubernetes master 节点运行如下组件:
kube-apiserver
kube-scheduler
kube-controller-managerkube-scheduler 和 kube-controller-manager 可以以集群模式运行,通过 leader 选举产生一个工作进程,其它进程处于阻塞模式。
对于 kube-apiserver,可以运行多个实例, 但对其它组件需要提供统一的访问地址,该地址需要高可用。本文档使用 keepalived 和 haproxy 实现 kube-apiserver VIP 高可用和负载均衡。
因为对master做了keepalived高可用,所以3台服务器都有可能会升成master服务器(主master宕机,会有从升级为主);因此所有的master操作,在3个服务器上都要进行。
下载最新版本的二进制文件, 想办法!!!
[root@k8s-master01 ~]# wget https://dl.k8s.io/v1.16.2/kubernetes-server-linux-amd64.tar.gz[root@k8s-master01 ~]# wget https://dl.k8s.io/v1.16.2/kubernetes-server-linux-amd64.tar.gz
将二进制文件拷贝到所有 master 节点
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_master.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /root/kubernetes/server/bin/{kube-apiserver,kube-controller-manager,kube-scheduler} root@${master_ip}:/opt/k8s/bin/ssh root@${master_ip} "chmod +x /opt/k8s/bin/*"done
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_master.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.01 部署高可用组件
- 本文档讲解使用 keepalived 和 haproxy 实现 kube-apiserver 高可用的步骤:
keepalived 提供 kube-apiserver 对外服务的 VIP;
haproxy 监听 VIP,后端连接所有 kube-apiserver 实例,提供健康检查和负载均衡功能; - 运行 keepalived 和 haproxy 的节点称为 LB 节点。由于 keepalived 是一主多备运行模式,故至少两个 LB 节点。
- 本文档复用 master 节点的三台机器,haproxy 监听的端口(8443) 需要与 kube-apiserver的端口 6443 不同,避免冲突。
- keepalived 在运行过程中周期检查本机的 haproxy 进程状态,如果检测到 haproxy 进程异常,则触发重新选主的过程,VIP 将飘移到新选出来的主节点,从而实现 VIP 的高可用。
- 所有组件(如 kubeclt、apiserver、controller-manager、scheduler 等)都通过 VIP 和haproxy 监听的 8443 端口访问 kube-apiserver 服务。
6.01.01 安装软件包,配置haproxy 配置文件
[root@k8s-master01 ~]# yum install keepalived haproxy -y[root@k8s-master01 ~]# vi /etc/haproxy/haproxy.cfggloballog /dev/log local0log /dev/log local1 noticechroot /var/lib/haproxystats socket /var/run/haproxy-admin.sock mode 660 level adminstats timeout 30suser haproxygroup haproxydaemonnbproc 1defaultslog globaltimeout connect 5000timeout client 10mtimeout server 10mlisten admin_statsbind 0.0.0.0:10080mode httplog 127.0.0.1 local0 errstats refresh 30sstats uri /statusstats realm welcome login\ Haproxystats auth haproxy:123456stats hide-versionstats admin if TRUElisten k8s-masterbind 0.0.0.0:8443mode tcpoption tcplogbalance sourceserver 192.168.2.201 192.168.2.201:6443 check inter 2000 fall 2 rise 2 weight 1server 192.168.2.202 192.168.2.202:6443 check inter 2000 fall 2 rise 2 weight 1server 192.168.2.203 192.168.2.203:6443 check inter 2000 fall 2 rise 2 weight 1
- haproxy 在 10080 端口输出 status 信息;
- haproxy 监听所有接口的 8443 端口,该端口与环境变量 ${KUBE_APISERVER} 指定的端口必须一致;
- server 字段列出所有kube-apiserver监听的 IP 和端口;
6.01.02 在其他服务器安装、下发haproxy 配置文件;并启动检查haproxy服务
[root@k8s-master01 ~]# vi /opt/k8s/script/haproxy.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"#安装haproxyssh root@${master_ip} "yum install -y keepalived haproxy"#下发配置文件scp /etc/haproxy/haproxy.cfg root@${master_ip}:/etc/haproxy#启动检查haproxy服务ssh root@${master_ip} "systemctl restart haproxy"ssh root@${master_ip} "systemctl enable haproxy.service"ssh root@${master_ip} "systemctl status haproxy|grep Active"#检查 haproxy 是否监听6443 端口ssh root@${master_ip} "netstat -lnpt|grep haproxy"done
[root@k8s-master01 ~]# bash /opt/k8s/script/haproxy.sh 192.168.2.201 192.168.2.202 192.168.2.203
输出类似:
Active: active (running) since Tue 2019-11-12 01:54:41 CST; 543ms agotcp 0 0 0.0.0.0:8443 0.0.0.0:* LISTEN 4995/haproxytcp 0 0 0.0.0.0:10080 0.0.0.0:* LISTEN 4995/haproxy
6.01.03 配置和启动 keepalived 服务
- keepalived 是一主(master)多备(backup)运行模式,故有两种类型的配置文件。
- master 配置文件只有一份,backup 配置文件视节点数目而定,对于本文档而言,规划如下:
master: 192.168.2.201
backup:192.168.2.202、192.168.2.203
在192.168.2.201 master主服务;配置文件:
[root@k8s-master01 ~]# vim /etc/keepalived/keepalived.confglobal_defs {router_id keepalived_ha_121}vrrp_script check-haproxy {script "killall -0 haproxy"interval 5weight -30}vrrp_instance VI-k8s-master {state MASTERpriority 120 # 第一台从为110, 以此类推!dont_track_primaryinterface eth0virtual_router_id 121advert_int 3track_script {check-haproxy}virtual_ipaddress {192.168.2.210}}
- 我的VIP 所在的接口nterface 为 eth0;根据自己的情况改变
- 使用 killall -0 haproxy 命令检查所在节点的 haproxy 进程是否正常。如果异常则将权重减少(-30),从而触发重新选主过程;
- router_id、virtual_router_id 用于标识属于该 HA 的 keepalived 实例,如果有多套keepalived HA,则必须各不相同;
在192.168.2.202, 192.168.2.203两台backup 服务;配置文件:
[root@k8s-master02 ~]# vi /etc/keepalived/keepalived.confglobal_defs {router_id keepalived_ha_122_123}vrrp_script check-haproxy {script "killall -0 haproxy"interval 5weight -30}vrrp_instance VI-k8s-master {state BACKUPpriority 110 # 第2台从为100dont_track_primaryinterface eth0virtual_router_id 121advert_int 3track_script {check-haproxy}virtual_ipaddress {192.168.2.210}}
- priority 的值必须小于 master 的值;两个从的值也需要不一样;
开启keepalived 服务
[root@k8s-master01 ~]# systemctl restart keepalived && systemctl enable keepalived && systemctl status keepalived
[root@k8s-master01 ~]# ip addr1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00inet 127.0.0.1/8 scope host lovalid_lft forever preferred_lft foreverinet6 ::1/128 scope hostvalid_lft forever preferred_lft forever2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000link/ether 00:15:5d:00:68:05 brd ff:ff:ff:ff:ff:ffinet 192.168.2.101/24 brd 192.168.2.255 scope global noprefixroute eth0valid_lft forever preferred_lft foreverinet 192.168.2.10/32 scope global eth0valid_lft forever preferred_lft foreverinet6 fe80::f726:9d22:2b89:694c/64 scope link noprefixroutevalid_lft forever preferred_lft forever3: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN group defaultlink/ether aa:43:e5:bb:88:28 brd ff:ff:ff:ff:ff:ffinet 10.30.34.0/32 scope global flannel.1valid_lft forever preferred_lft foreverinet6 fe80::a843:e5ff:febb:8828/64 scope linkvalid_lft forever preferred_lft forever
- 在master主服务器上能看到eth0网卡上已经有VIP的IP地址存在
6.01.04 查看 haproxy 状态页面
- 浏览器访问 192.168.2.210:10080/status 地址
6.02 部署 kube-apiserver 组件
下载二进制文件
- kubernetes_server 包里有, 已经解压到/opt/k8s/bin下
6.02.01 创建 kube-apiserver证书和私钥
创建证书签名请求(host地址多加几个备用--> "192.168.2.8","192.168.2.9")
[root@k8s-master01 ~]# cat > /opt/k8s/cert/kube-apiserver-csr.json <<EOF{"CN": "kubernetes","hosts": ["127.0.0.1","10.96.0.1","192.168.2.210","192.168.2.201","192.168.2.202","192.168.2.203","192.168.2.8","192.168.2.9""kubernetes","kubernetes.default","kubernetes.default.svc","kubernetes.default.svc.cluster","kubernetes.default.svc.cluster.local"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "k8s","OU": "steams"}]}EOF
- hosts 字段指定授权使用该证书的 IP 或域名列表,这里列出了 VIP 、apiserver节点 IP、kubernetes 服务 IP 和域名;
- 域名最后字符不能是 . (如不能为kubernetes.default.svc.cluster.local. ),否则解析时失败,提示: x509:cannot parse dnsName "kubernetes.default.svc.cluster.local." ;
- 如果使用非 cluster.local 域名,如 opsnull.com ,则需要修改域名列表中的最后两个域名为: kubernetes.default.svc.opsnull 、 kubernetes.default.svc.opsnull.com
- kubernetes 服务 IP 是 apiserver 自动创建的,一般是 --service-cluster-ip-range 参数指定的网段的第一个IP,后续可以通过如下命令获取:
kubectl get svc kubernetes
生成证书和私钥
[root@k8s-master01 ~]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \-ca-key=/opt/k8s/cert/ca-key.pem \-config=/opt/k8s/cert/ca-config.json \-profile=kubernetes /opt/k8s/cert/kube-apiserver-csr.json | cfssljson -bare /opt/k8s/cert/kube-apiserver[root@k8s-master01 ~]# ll /opt/k8s/cert/kube-apiserver*kube-apiserver.csr kube-apiserver-csr.json kube-apiserver-key.pem kube-apiserver.pem
6.02.02 创建加密配置文件
产生一个用来加密Etcd 的 Key:
[root@k8s-master01 ~]# head -c 32 /dev/urandom | base64# 返回一个key, 每台master节点需要用一样的 Key!!!muqIUutYDd5ARLtsg/W1CYWs3g8Fq9uJO/lDpSsv9iw=
使用这个加密的key,创建加密配置文件
[root@k8s-master01 ~]# vi encryption-config.yamlkind: EncryptionConfigapiVersion: v1resources:- resources:- secretsproviders:- aescbc:keys:- name: key1secret: muqIUutYDd5ARLtsg/W1CYWs3g8Fq9uJO/lDpSsv9iw=- identity: {}
6.02.03 将生成的证书和私钥文件、加密配置文件拷贝到master节点的/opt/k8s目录下
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_apiserver.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/cert/kube-apiserver*.pem root@${master_ip}:/opt/k8s/cert/scp /root/encryption-config.yaml root@${master_ip}:/opt/k8s/done
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_apiserver.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.02.04 创建 kube-apiserver 的 systemd unit 模板文件
[root@k8s-master01 ~]# vi /opt/k8s/kube-apiserver/kube-apiserver.service.template[Unit]Description=Kubernetes API ServerDocumentation=https://github.com/GoogleCloudPlatform/kubernetesAfter=network.target[Service]ExecStart=/opt/k8s/bin/kube-apiserver \--enable-admission-plugins=NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota \--anonymous-auth=false \--experimental-encryption-provider-config=/opt/k8s/encryption-config.yaml \--advertise-address=##MASTER_IP## \--bind-address=##MASTER_IP## \--insecure-port=0 \--secure-port=6443 \--authorization-mode=Node,RBAC \--runtime-config=api/all \--enable-bootstrap-token-auth \--service-cluster-ip-range=10.96.0.0/16 \--service-node-port-range=30000-50000 \--tls-cert-file=/opt/k8s/cert/kube-apiserver.pem \--tls-private-key-file=/opt/k8s/cert/kube-apiserver-key.pem \--client-ca-file=/opt/k8s/cert/ca.pem \--kubelet-client-certificate=/opt/k8s/cert/kube-apiserver.pem \--kubelet-client-key=/opt/k8s/cert/kube-apiserver-key.pem \--service-account-key-file=/opt/k8s/cert/ca-key.pem \--etcd-cafile=/opt/k8s/cert/ca.pem \--etcd-certfile=/opt/k8s/cert/kube-apiserver.pem \--etcd-keyfile=/opt/k8s/cert/kube-apiserver-key.pem \--etcd-servers=https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379 \--enable-swagger-ui=true \--allow-privileged=true \--apiserver-count=3 \--audit-log-maxage=30 \--audit-log-maxbackup=3 \--audit-log-maxsize=100 \--audit-log-path=/var/log/kube-apiserver-audit.log \--event-ttl=1h \--alsologtostderr=true \--logtostderr=false \--log-dir=/var/log/kubernetes \--v=2Restart=on-failureRestartSec=5Type=notifyLimitNOFILE=65536[Install]WantedBy=multi-user.target
- -experimental-encryption-provider-config :启用加密特性;
- --authorization-mode=Node,RBAC : 开启 Node 和 RBAC 授权模式,拒绝未授权的请求;
- --enable-admission-plugins :启用 ServiceAccount 和NodeRestriction ;
- --service-account-key-file :签名 ServiceAccount Token 的公钥文件,kube-controller-manager 的 --service-account-private-key-file 指定私钥文件,两者配对使用;
- --tls-*-file :指定 apiserver 使用的证书、私钥和 CA 文件。 --client-ca-file 用于验证 client (kue-controller-manager、kube-scheduler、kubelet、kube-proxy 等)请求所带的证书;
- --kubelet-client-certificate 、 --kubelet-client-key :如果指定,则使用 https 访问 kubelet APIs;需要为证书对应的用户定义 RBAC 规则,否则访问 kubelet API 时提示未授权;
- --bind-address : 不能为 127.0.0.1 ,否则外界不能访问它的安全端口6443;
- --insecure-port=0 :关闭监听非安全端口(8080);
- --service-cluster-ip-range : 指定 Service Cluster IP 地址段;
- --service-node-port-range : 指定 NodePort 的端口范围;
- --runtime-config=api/all=true : 启用所有版本的 APIs,如autoscaling/v2alpha1;
- --enable-bootstrap-token-auth :启用 kubelet bootstrap 的 token 认证;
- --apiserver-count=3 :指定集群运行模式,多台 kube-apiserver 会通过 leader选举产生一个工作节点,其它节点处于阻塞状态;
6.02.05 为各master节点创建和分发 kube-apiserver的systemd unit文件; 启动检查 kube-apiserver 服务
[root@k8s-master01 ~]# vi /opt/k8s/script/apiserver_service.shMASTER_IPS=("$1" "$2" "$3")#替换模板文件中的变量,为各节点创建 systemd unit 文件for (( i=0; i < 3; i++ ));dosed "s/##MASTER_IP##/${MASTER_IPS[i]}/" /opt/k8s/kube-apiserver/kube-apiserver.service.template > /opt/k8s/kube-apiserver/kube-apiserver-${MASTER_IPS[i]}.servicedone#启动并检查 kube-apiserver 服务for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/kube-apiserver/kube-apiserver-${master_ip}.service root@${master_ip}:/etc/systemd/system/kube-apiserver.servicessh root@${master_ip} "systemctl daemon-reload && systemctl enable kube-apiserver && systemctl restart kube-apiserver"ssh root@${master_ip} "systemctl status kube-apiserver |grep 'Active:'"done
[root@k8s-master01 ~]# bash /opt/k8s/script/apiserver_service.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.02.06 打印 kube-apiserver 写入 etcd 的数据
[root@k8s-master01 ~]# ETCDCTL_API=3 etcdctl \--endpoints="https://192.168.2.201:2379,https://192.168.2.202:2379,https://192.168.2.203:2379" \--cacert=/opt/k8s/cert/ca.pem \--cert=/opt/etcd/cert/etcd.pem \--key=/opt/etcd/cert/etcd-key.pem \get /registry/ --prefix --keys-only
6.02.07 检查集群信息
[root@k8s-master01 ~]# kubectl cluster-infoKubernetes master is running at https://192.168.2.210:8443[root@k8s-master01 ~]# kubectl get all --all-namespacesNAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEdefault service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 49m# 6443: 接收 https 请求的安全端口,对所有请求做认证和授权;# 由于关闭了非安全端口,故没有监听 8080;[root@k8s-master01 ~]# ss -nutlp |grep apiservertcp LISTEN 0 128 192.168.2.201:6443 0.0.0.0:* users:(("kube-apiserver",pid=4425,fd=6))
6.03 部署高可用kube-controller-manager 集群
- 该集群包含 3 个节点,启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态。当 leader 节点不可用后,剩余节点将再次进行选举产生新的 leader 节点,从而保证服务的可用性。
- 为保证通信安全,本文档先生成 x509 证书和私钥,kube-controller-manager 在如下两种情况下使用该证书:
与 kube-apiserver 的安全端口通信时;
在安全端口(https,10252) 输出 prometheus 格式的 metrics;
准备工作:下载kube-controller-manager二进制文件(包含在kubernetes-server包里, 已解压发送)
6.03.01 创建 kube-controller-manager 证书和私钥
创建证书签名请求:
[root@k8s-master01 ~]# cat > /opt/k8s/cert/kube-controller-manager-csr.json <<EOF{"CN": "system:kube-controller-manager","key": {"algo": "rsa","size": 2048},"hosts": ["127.0.0.1","192.168.2.201","192.168.2.202","192.168.2.203"],"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "system:kube-controller-manager","OU": "steams"}]}EOF
- hosts 列表包含所有 kube-controller-manager 节点 IP;
- CN 为 system:kube-controller-manager、O 为 system:kube-controller-manager(kubernetes 内置的 ClusterRoleBindings system:kube-controller-manager 赋予kube-controller-manager 工作所需的权限.)
生成证书和私钥
cfssl gencert -ca=/opt/k8s/cert/ca.pem \-ca-key=/opt/k8s/cert/ca-key.pem \-config=/opt/k8s/cert/ca-config.json \-profile=kubernetes /opt/k8s/cert/kube-controller-manager-csr.json | cfssljson -bare /opt/k8s/cert/kube-controller-manager[root@k8s-master01 ~]# ll /opt/k8s/cert/kube-controller-manager*kube-controller-manager.csr kube-controller-manager-csr.json kube-controller-manager-key.pem kube-controller-manager.pem
6.03.02 创建.kubeconfig 文件
- kubeconfig 文件包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书;
执行命令,生成kube-controller-manager.kubeconfig文件
# step.1 设置集群参数:[root@k8s-master01 ~]# kubectl config set-cluster kubernetes \--certificate-authority=/opt/k8s/cert/ca.pem \--embed-certs=true \--server=https://192.168.2.210:8443 \--kubeconfig=/opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfig# step.2 设置客户端认证参数[root@k8s-master01 ~]# kubectl config set-credentials system:kube-controller-manager \--client-certificate=/opt/k8s/cert/kube-controller-manager.pem \--client-key=/opt/k8s/cert/kube-controller-manager-key.pem \--embed-certs=true \--kubeconfig=/opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfig# step.3 设置上下文参数[root@k8s-master01 ~]# kubectl config set-context system:kube-controller-manager@kubernetes \--cluster=kubernetes \--user=system:kube-controller-manager \--kubeconfig=/opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfig# tep.4 设置默认上下文[root@k8s-master01 ~]# kubectl config use-context system:kube-controller-manager@kubernetes \--kubeconfig=/opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfig
验证kube-controller-manager.kubeconfig文件
[root@k8s-master01 ~]# kubectl config view --kubeconfig=/opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfigapiVersion: v1clusters:- cluster:certificate-authority-data: DATA+OMITTEDserver: https://192.168.2.210:8443name: kubernetescontexts:- context:cluster: kubernetesuser: system:kube-controller-managername: system:kube-controller-manager@kubernetescurrent-context: system:kube-controller-manager@kuberneteskind: Configpreferences: {}users:- name: system:kube-controller-manageruser:client-certificate-data: REDACTEDclient-key-data: REDACTED
分发生成的证书和私钥、kubeconfig 到所有 master 节点
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_controller_manager.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/cert/kube-controller-manager*.pem root@${master_ip}:/opt/k8s/cert/scp /opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfig root@${master_ip}:/opt/k8s/kube-controller-manager/done
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_controller_manager.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.03.03 创建和分发 kube-controller-manager 的 systemd unit 文件
[root@k8s-master01 ~]# vi /opt/k8s/kube-controller-manager/kube-controller-manager.service.template[Unit]Description=Kubernetes Controller ManagerDocumentation=https://github.com/GoogleCloudPlatform/kubernetes[Service]ExecStart=/opt/k8s/bin/kube-controller-manager \--port=0 \--secure-port=10252 \--bind-address=127.0.0.1 \--kubeconfig=/opt/k8s/kube-controller-manager/kube-controller-manager.kubeconfig \--service-cluster-ip-range=10.96.0.0/16 \--cluster-name=kubernetes \--cluster-signing-cert-file=/opt/k8s/cert/ca.pem \--cluster-signing-key-file=/opt/k8s/cert/ca-key.pem \--experimental-cluster-signing-duration=876000h \--root-ca-file=/opt/k8s/cert/ca.pem \--service-account-private-key-file=/opt/k8s/cert/ca-key.pem \--leader-elect=true \--feature-gates=RotateKubeletServerCertificate=true \--controllers=*,bootstrapsigner,tokencleaner \--horizontal-pod-autoscaler-use-rest-clients=true \--horizontal-pod-autoscaler-sync-period=10s \--tls-cert-file=/opt/k8s/cert/kube-controller-manager.pem \--tls-private-key-file=/opt/k8s/cert/kube-controller-manager-key.pem \--use-service-account-credentials=true \--alsologtostderr=true \--logtostderr=false \--log-dir=/var/log/kubernetes \--v=2Restart=onRestart=on-failureRestartSec=5[Install]WantedBy=multi-user.target
- --port=0:关闭监听 http /metrics 的请求,同时 --address 参数无效,--bind-address 参数有效;
- --secure-port=10252、--bind-address=0.0.0.0: 在所有网络接口监听 10252 端口的 https /metrics 请求;
- --kubeconfig:指定 kubeconfig 文件路径,kube-controller-manager 使用它连接和验证 kube-apiserver;
- --cluster-signing-*-file:签名 TLS Bootstrap 创建的证书;
- --experimental-cluster-signing-duration:指定 TLS Bootstrap 证书的有效期;
- --root-ca-file:放置到容器 ServiceAccount 中的 CA 证书,用来对 kube-apiserver 的证书进行校验;
- --service-account-private-key-file:签名 ServiceAccount 中 Token 的私钥文件,必须和 kube-apiserver 的 --service-account-key-file 指定的公钥文件配对使用;
- --service-cluster-ip-range :指定 Service Cluster IP 网段,必须和 kube-apiserver 中的同名参数一致;
- --leader-elect=true:集群运行模式,启用选举功能;被选为 leader 的节点负责处理工作,其它节点为阻塞状态;
- --feature-gates=RotateKubeletServerCertificate=true:开启 kublet server 证书的自动更新特性;
- --controllers=*,bootstrapsigner,tokencleaner:启用的控制器列表,tokencleaner 用于自动清理过期的 Bootstrap token;
- --horizontal-pod-autoscaler-*:custom metrics 相关参数,支持 autoscaling/v2alpha1;
- --tls-cert-file、--tls-private-key-file:使用 https 输出 metrics 时使用的 Server 证书和秘钥;
- --use-service-account-credentials=true:
6.03.04 kube-controller-manager 的权限
- ClusteRole: system:kube-controller-manager 的权限很小,只能创建 secret、serviceaccount 等资源对象,各 controller 的权限分散到 ClusterRole system:controller:XXX 中。
- 需要在 kube-controller-manager 的启动参数中添加 --use-service-account-credentials=true 参数,这样 main controller 会为各 controller 创建对应的 ServiceAccount XXX-controller。
- 内置的 ClusterRoleBinding system:controller:XXX 将赋予各 XXX-controller ServiceAccount 对应的 ClusterRole system:controller:XXX 权限。
6.03.05 分发systemd unit 文件到所有master 节点;启动检查 kube-controller-manager 服务
[root@k8s-master01 ~]# vi /opt/k8s/script/controller_manager_service.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/kube-controller-manager/kube-controller-manager.service.template root@${master_ip}:/etc/systemd/system/kube-controller-manager.servicessh root@${master_ip} "systemctl daemon-reload && systemctl enable kube-controller-manager && systemctl start kube-controller-manager "ssh root@${master_ip} "systemctl status kube-controller-manager|grep Active"done
[root@k8s-master01 ~]# bash /opt/k8s/script/controller_manager_service.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.03.6 查看输出的 metric
[root@k8s-master01 ~]# ss -nutlp |grep kube-controlltcp LISTEN 0 128 127.0.0.1:10252 0.0.0.0:* users:(("kube-controller",pid=9382,fd=6))
6.03.07 测试 kube-controller-manager 集群的高可用
- 停掉一个或两个节点的 kube-controller-manager 服务,观察其它节点的日志,看是否获取了 leader 权限。
- 查看当前的 leader
[root@k8s-master02 ~]# kubectl get endpoints kube-controller-manager --namespace=kube-system -o yaml
6.04 部署高可用 kube-scheduler 集群
- 该集群包含 3 个节点,启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态。当 leader 节点不可用后,剩余节点将再次进行选举产生新的 leader 节点,从而保证服务的可用性。
- 为保证通信安全,本文档先生成 x509 证书和私钥,kube-scheduler 在如下两种情况下使用该证书:
与 kube-apiserver 的安全端口通信;
在安全端口(https,10251) 输出 prometheus 格式的 metrics;
准备工作:下载kube-scheduler 的二进制文件---^^^
6.04.01 创建 kube-scheduler 证书和私钥
创建证书签名请求:
[root@k8s-master01 ~]# cat > /opt/k8s/cert/kube-scheduler-csr.json <<EOF{"CN": "system:kube-scheduler","hosts": ["127.0.0.1","192.168.2.201","192.168.2.202","192.168.2.203"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","ST": "BeiJing","L": "BeiJing","O": "system:kube-scheduler","OU": "steams"}]}EOF
- hosts 列表包含所有 kube-scheduler 节点 IP;
- CN 为 system:kube-scheduler、O 为 system:kube-scheduler (kubernetes 内置的 ClusterRoleBindings system:kube-scheduler 将赋予 kube-scheduler 工作所需的权限.)
生成证书和私钥
[root@k8s-master01 ~]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \-ca-key=/opt/k8s/cert/ca-key.pem \-config=/opt/k8s/cert/ca-config.json \-profile=kubernetes /opt/k8s/cert/kube-scheduler-csr.json | cfssljson -bare /opt/k8s/cert/kube-scheduler[root@k8s-master01 ~]# ll /opt/k8s/cert/kube-scheduler*kube-scheduler.csr kube-scheduler-csr.json kube-scheduler-key.pem kube-scheduler.pem
6.04.02 创建kubeconfig 文件
- kubeconfig 文件包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书;
执行命令,生成kube-scheduler.kubeconfig文件
# step.1 设置集群参数[root@k8s-master01 ~]# kubectl config set-cluster kubernetes \--certificate-authority=/opt/k8s/cert/ca.pem \--embed-certs=true \--server=https://192.168.2.210:8443 \--kubeconfig=/opt/k8s/kube-scheduler/kube-scheduler.kubeconfig# step.2 设置客户端认证参数[root@k8s-master01 ~]# kubectl config set-credentials system:kube-scheduler \--client-certificate=/opt/k8s/cert/kube-scheduler.pem \--client-key=/opt/k8s/cert/kube-scheduler-key.pem \--embed-certs=true \--kubeconfig=/opt/k8s/kube-scheduler/kube-scheduler.kubeconfig# step.3 设置上下文参数[root@k8s-master01 ~]# kubectl config set-context system:kube-scheduler@kubernetes \--cluster=kubernetes \--user=system:kube-scheduler \--kubeconfig=/opt/k8s/kube-scheduler/kube-scheduler.kubeconfig# step.4设置默认上下文[root@k8s-master01 ~]# kubectl config use-context system:kube-scheduler@kubernetes \--kubeconfig=/opt/k8s/kube-scheduler/kube-scheduler.kubeconfig
验证kube-controller-manager.kubeconfig文件
[root@k8s-master01 ~]# kubectl config view --kubeconfig=/opt/k8s/kube-scheduler/kube-scheduler.kubeconfigapiVersion: v1clusters:- cluster:certificate-authority-data: DATA+OMITTEDserver: https://192.168.2.210:8443name: kubernetescontexts:- context:cluster: kubernetesuser: system:kube-schedulername: system:kube-scheduler@kubernetescurrent-context: system:kube-scheduler@kuberneteskind: Configpreferences: {}users:- name: system:kube-scheduleruser:client-certificate-data: REDACTEDclient-key-data: REDACTED
6.04.03 分发生成的证书和私钥、kubeconfig 到所有 master 节点
[root@k8s-master01 ~]# vi /opt/k8s/script/scp_scheduler.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/cert/kube-scheduler*.pem root@${master_ip}:/opt/k8s/cert/scp /opt/k8s/kube-scheduler/kube-scheduler.kubeconfig root@${master_ip}:/opt/k8s/kube-scheduler/done
[root@k8s-master01 ~]# bash /opt/k8s/script/scp_scheduler.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.04.04 创建kube-scheduler 的 systemd unit 文件
[root@k8s-master01 ~]# vi /opt/k8s/kube-scheduler/kube-scheduler.service.template[Unit]Description=Kubernetes SchedulerDocumentation=https://github.com/GoogleCloudPlatform/kubernetes[Service]ExecStart=/opt/k8s/bin/kube-scheduler \--address=127.0.0.1 \--kubeconfig=/opt/k8s/kube-scheduler/kube-scheduler.kubeconfig \--leader-elect=true \--alsologtostderr=true \--logtostderr=false \--log-dir=/var/log/kubernetes \--v=2Restart=on-failureRestartSec=5[Install]WantedBy=multi-user.target
- ps: kube-scheduler目前仅支持http, 所以少了一大推相关安全设定!
- --address:在 127.0.0.1:10251 端口接收 http /metrics 请求;kube-scheduler 目前还不支持接收 https 请求;
- --kubeconfig:指定 kubeconfig 文件路径,kube-scheduler 使用它连接和验证 kube-apiserver;
- --leader-elect=true:集群运行模式,启用选举功能;被选为 leader 的节点负责处理工作,其它节点为阻塞状态;
6.04.05 分发systemd unit 文件到所有master 节点;启动检查kube-scheduler 服务
[root@k8s-master01 ~]# vi /opt/k8s/script/scheduler_service.shMASTER_IPS=("$1" "$2" "$3")for master_ip in ${MASTER_IPS[@]};doecho ">>> ${master_ip}"scp /opt/k8s/kube-scheduler/kube-scheduler.service.template root@${master_ip}:/etc/systemd/system/kube-scheduler.servicessh root@${master_ip} "systemctl daemon-reload && systemctl enable kube-scheduler && systemctl start kube-scheduler && systemctl status kube-scheduler|grep Active"done
[root@k8s-master01 ~]# bash /opt/k8s/script/scheduler_service.sh 192.168.2.201 192.168.2.202 192.168.2.203
6.04.06 查看输出的 metric
- kube-scheduler 监听 10251 端口,接收 http 请求:
[root@k8s-master01 ~]# ss -nutlp |grep kube-schedulertcp LISTEN 0 128 127.0.0.1:10251 0.0.0.0:* users:(("kube-scheduler",pid=8584,fd=6))tcp LISTEN 0 128 *:10259 *:* users:(("kube-scheduler",pid=8584,fd=7))[root@k8s-master01 ~]# curl -s http://127.0.0.1:10251/metrics |head# HELP apiserver_audit_event_total [ALPHA] Counter of audit events generated and sent to the audit backend.# TYPE apiserver_audit_event_total counterapiserver_audit_event_total 0# HELP apiserver_audit_requests_rejected_total [ALPHA] Counter of apiserver requests rejected due to an error in audit logging backend.# TYPE apiserver_audit_requests_rejected_total counterapiserver_audit_requests_rejected_total 0# HELP apiserver_client_certificate_expiration_seconds [ALPHA] Distribution of the remaining lifetime on the certificate used to authenticate a request.# TYPE apiserver_client_certificate_expiration_seconds histogramapiserver_client_certificate_expiration_seconds_bucket{le="0"} 0apiserver_client_certificate_expiration_seconds_bucket{le="1800"} 0
6.04.07 测试 kube-scheduler 集群的高可用
- 停掉一个或两个节点的 kube-scheduler 服务,观察其它节点的日志,看是否获取了 leader 权限。
- 查看当前的 leader
[root@k8s-master02 ~]# kubectl get endpoints kube-scheduler --namespace=kube-system -o yaml
master集群已部署完毕!
K8S入门系列之集群二进制部署-->master篇(二)的更多相关文章
- K8S入门系列之集群二进制部署-->node篇(三)
node节点组件 docker kubelet kube-proxy kubernetes-server-linux-amd64.tar.gz(相关的这里都能找到二进制文件!) falnnel 1. ...
- k8s入门系列之集群安装篇
关于kubernetes组件的详解介绍,请阅读上一篇文章<k8s入门系列之介绍篇> Kubernetes集群安装部署 •Kubernetes集群组件: - etcd 一个高可用的K/V键值 ...
- k8s 入门系列之集群安装篇
关于kubernetes组件的详解介绍,请阅读上一篇文章<k8s入门系列之介绍篇> Kubernetes集群安装部署 •Kubernetes集群组件: - etcd 一个高可用的K/V键值 ...
- K8S入门系列之集群yum安装(一)
kubernetes master 节点包含的组件: 1.kube-apiserver :集群核心,集群API接口.集群各个组件通信的中枢:集群安全控制: 2.kube-scheduler: 集群调度 ...
- 附: K8S入门系列之集群健康检查
Kubernetes的kubectl常用命令 1. pod操作 # 获取所有的pod kubectl get pods --all-namespaces -o wide # 使用yaml文件创建pod ...
- k8s入门系列之扩展组件(一)DNS安装篇
DNS (domain name system),提供域名解析服务,解决了难于记忆的IP地址问题,以更人性可读可记忆可标识的方式映射对应IP地址. Cluster DNS扩展插件用于支持k8s集群系统 ...
- Kubernetes学习之路(二)之ETCD集群二进制部署
ETCD集群部署 所有持久化的状态信息以KV的形式存储在ETCD中.类似zookeeper,提供分布式协调服务.之所以说kubenetes各个组件是无状态的,就是因为其中把数据都存放在ETCD中.由于 ...
- SpringCloud微服务实战——搭建企业级开发框架(三十四):SpringCloud + Docker + k8s实现微服务集群打包部署-Maven打包配置
SpringCloud微服务包含多个SpringBoot可运行的应用程序,在单应用程序下,版本发布时的打包部署还相对简单,当有多个应用程序的微服务发布部署时,原先的单应用程序部署方式就会显得复杂且 ...
- SpringCloud微服务实战——搭建企业级开发框架(三十五):SpringCloud + Docker + k8s实现微服务集群打包部署-集群环境部署
一.集群环境规划配置 生产环境不要使用一主多从,要使用多主多从.这里使用三台主机进行测试一台Master(172.16.20.111),两台Node(172.16.20.112和172.16.20.1 ...
随机推荐
- 不依赖远程API启动SEER区块链命令行钱包和网页钱包的方法
不依赖远程API启动命令行钱包和网页钱包的方法 在SEER的见证人操作等需要使用命令行钱包的操作中,我们介绍了通过钱包连接远程API来和区块链交互的方法.类似这样: cli_wallet.exe -s ...
- 引入flask_cache时出现ModuleNotFoundError: No module named 'flask.ext'
环境: centos 7.3 python 3.6 flask 1.0.2 flask-cache 0.13.1 引入flask_cache后运行时,出现以下错误 Traceback (most re ...
- python 学习之 基础篇一 python及pycharm的安装
一. Python 环境搭建(安装请参照https://www.runoob.com/python/python-install.html) Python下载 Python官网:https://www ...
- Windows系统调用中的现场保存
Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html Windows系统调用中的现场保存 我们之前介绍过三环进零环的步骤 ...
- java高并发_博客-网址-资料 推荐
大概说一下自己作为入门学习java高并发的博客地址,很不错在自己的博客里记录一下:如果能有刷到我的博客的骚年,又刚好想了解java高并发,强烈推荐看看 地址:http://www.itsoku.com ...
- Ubuntu 安装中文
系统环境:
- Api版本管理
关于SpringMVC中如何添加,这一篇说的很详细了. http://www.cnblogs.com/jcli/p/springmvc_restful_version.html 版本管理可以通过路径进 ...
- 浏览器安装Tampermonkey(俗称油猴子插件),实现免费观看Vip视频、免费下载付费资源等……
应用场景 说起浏览器,本人常用google,谷歌浏览器,速度快,里面有很多插件,可以实现用户百度云盘下载限制,破解vip视频.百度广告屏蔽,视频广告的屏蔽,百度网盘资源直接下载等实用功能.今天就来分享 ...
- LeetCode刷题总结-递归篇
递归是算法学习中很基本也很常用的一种方法,但是对于初学者来说比较难以理解(PS:难点在于不断调用自身,产生多个返回值,理不清其返回值的具体顺序,以及最终的返回值到底是哪一个?).因此,本文将选择Lee ...
- office visio 2019 下载激活
安装 下载 office ed2k://|file|cn_office_professional_plus_2019_x86_x64_dvd_5e5be643.iso|3775004672|1E4FF ...