介绍

组成

1.PointNet classification network分类网络

  1. part segmentation network

数据集

1.point clouds sampled from 3D shapes
2.ShapeNetPart dataset.

结构

其主要分成以下三部分:

  • 数据处理
  • model构建
  • 结果选择

数据处理

将点云处理成程序可用的格式,具体实现在 provider.py 中,主要包含了数据下载、预处理(shuffle->rotate->jitter)、格式转换(hdf5->txt)

shuffle

def shuffle_data(data, labels):
""" Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices
"""
idx = np.arange(len(labels))#返回一个列表
# print('idx=',idx)#idx= [ 0 1 2 ... 2045 2046 2047]
np.random.shuffle(idx)#把idx进行shuffle
# print('idx=', idx)
return data[idx, ...], labels[idx], idx

rotate旋转处理

def rotate_point_cloud(batch_data):
# print('batch data shape=',batch_data.shape)#(32, 1024, 3)
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi#生成一个随机数
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
#先让shape_pc的形状变成(?,3),因为旋转矩阵为(3,3)
return rotated_data

jitter抖动处理

def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
B, N, C = batch_data.shape
assert(clip > 0)
jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)#将数组范围限制在(-1*clip, clip)
jittered_data += batch_data
return jittered_data

model构建

Feature transform net

with tf.variable_scope('transform_net1') as sc:#T-net
transform = input_transform_net(point_cloud, is_training, bn_decay, K=3)
print('point cloud=',point_cloud)#(32, 1024, 3)
# print('input transform=',transform)#(32, 3, 3)
point_cloud_transformed = tf.matmul(point_cloud, transform)
# print('point_cloud_transformed=',point_cloud_transformed)#(32, 1024, 3)

mlp(64,128,1024)

net = tf_util.conv2d(net_transformed, 64, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv3', bn_decay=bn_decay)
print('net3=',net)#(32, 1024, 1, 64)
net = tf_util.conv2d(net, 128, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv4', bn_decay=bn_decay)
print('net4=',net)#(32, 1024, 1, 128)
net = tf_util.conv2d(net, 1024, [1,1],
padding='VALID', stride=[1,1],
bn=True, is_training=is_training,
scope='conv5', bn_decay=bn_decay)
print('net5=',net)#(32, 1024, 1, 1024)

类别投票

实现方法

batch_pred_sum.shape=(?,40) # 每个data对40个类的可能性

pred_val.shape=(?,) # 每个data所属的可能性最大的类

 pred_val = np.argmax(batch_pred_sum, 1)
#返回沿轴axis最大值的索引,即得到预测值最大的那一类的idx(label)

评估

输出(预测label,真实label)

</dump/pred_label.txt>

4, 4
0, 0
2, 2
8, 8
14, 23
...
<shape_names.txt>

airplane
bathtub
bed
bench
bookshelf
bottle
bowl
car
chair
cone
cup

保存预测错误的图片,并可视化

</dump/xxxx_pred_name.jpg>
命名=第几个预测错误的图片+真实label+预测label

例子 /dump/1028_label_bed_pred_sofa.jpg

三张点云图片,分别是当前点云数据旋转三个不同角度之后的样子

save code

  for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
fout.write('%d, %d\n' % (pred_val[i-start_idx], l))
# print('!!!!!!!!!!','%d, %d\n' % (pred_val[i-start_idx], l))
if pred_val[i-start_idx] != l and FLAGS.visu: # ERROR CASE, DUMP!如果预测错了
img_filename = '%d_label_%s_pred_%s.jpg' % (error_cnt, SHAPE_NAMES[l],
SHAPE_NAMES[pred_val[i-start_idx]])
#第几个预测错误的图片+真实label+预测label
img_filename = os.path.join(DUMP_DIR, img_filename)
output_img = pc_util.point_cloud_three_views(np.squeeze(current_data[i, :, :]))
scipy.misc.imsave(img_filename, output_img)
error_cnt += 1

画点云图的code

draw_point_cloud()
Input:
points: Nx3 numpy array
Output:
gray image

记录loss,预测精确度

/dump/log_evaluate.txt

eval mean loss: 1.816358
eval accuracy: 0.501216
eval avg class acc: 0.421297
airplane: 0.980
bathtub: 0.440
bed: 0.940
bench: 0.450
...

pointNet代码的更多相关文章

  1. pointnet.pytorch代码解析

    pointnet.pytorch代码解析 代码运行 Training cd utils python train_classification.py --dataset <dataset pat ...

  2. pointnet++之classification/train.py

    1.数据集加载 if FLAGS.normal: assert(NUM_POINT<=10000) DATA_PATH = os.path.join(ROOT_DIR, 'data/modeln ...

  3. pointnet++的pytorch实现

    代码参考:https://blog.csdn.net/weixin_39373480/article/details/88934146 def recognize_all_data(test_area ...

  4. pointnet++之scannet/train.py

    1.作者可能把scannet数据集分成了训练集和测试集并处理成了.pickle文件. 2.在代码运行过程中,作者从.pickle文件中读出训练集1201个场景的x.y.z坐标和测试集312个场景的x. ...

  5. 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

    目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...

  6. 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

    目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...

  7. 日期格式代码出现两次的错误 ORA-01810

    错误的原因是使用了两次MM . 一.Oracle中使用to_date()时格式化日期需要注意格式码 如:select to_date('2005-01-01 11:11:21','yyyy-MM-dd ...

  8. 可爱的豆子——使用Beans思想让Python代码更易维护

    title: 可爱的豆子--使用Beans思想让Python代码更易维护 toc: false comments: true date: 2016-06-19 21:43:33 tags: [Pyth ...

  9. iOS代码规范(OC和Swift)

    下面说下iOS的代码规范问题,如果大家觉得还不错,可以直接用到项目中,有不同意见 可以在下面讨论下. 相信很多人工作中最烦的就是代码不规范,命名不规范,曾经见过一个VC里有3个按钮被命名为button ...

随机推荐

  1. Hbase启动出问题 master.HMaster: Failed to become active master

    Hbase启动出问题 2019-12-15 09:59:57,183 WARN [hadoop:16000.activeMasterManager] hdfs.DFSClient: DFS Read ...

  2. <Topological Sort> ( 高频, hard) 269

    . Alien Dictionary 这些就是有向图的边,对于有向图中的每个结点,计算其入度,然后从入度为0的结点开始 BFS 遍历这个有向图,然后将遍历路径保存下来返回即可.下面来看具体的做法: 根 ...

  3. AJAX 实现form表单提交

    1.使用Ajax实现异步操作,点击登录按钮后,即触发form表单的提交事件,数据传输至后端 JSP: <script type="text/javascript" src=& ...

  4. 微信小程序开发练习

    微信小程序开发工具git管理 https://blog.csdn.net/qq_36672905/article/details/82887102 这个开发工具的界面和交互真的是熟悉又友好,吹爆他

  5. Codeforces Round #598 (Div. 3) F. Equalizing Two Strings 构造

    F. Equalizing Two Strings You are given two strings s and t both of length n and both consisting of ...

  6. python做中学(三)条件编译的用法

    C代码中经常使用条件编译,python中该怎么用呢?Python没有像C或C或Java甚至Java一样编译,python文件被“即时”编译,您可以将其视为类似于Basic或Perl的解释语言 只需使用 ...

  7. 史上最全HashMap遍历方式

    java Hashmap Map TreeMap 的几种遍历方式,全网最全,全网最强 package Collec2; import java.util.HashMap; import java.ut ...

  8. Linux安装最新版Node.js

    由于直接yum安装的nodejs版本太低,所以本篇文章向大家介绍在 Linux 上安装 Node.js 最新版的方法. 安装环境 本机系统:CentOS Linux release 7.5 Node. ...

  9. @PostConstruct - 静态方法调用IOC容器Bean对象

    需求:工具类里面引用IOC容器Bean,强迫症患者在调用工具类时喜欢用静态方法的方式而非注入的方式去调用,但是spring 不支持注解注入静态成员变量. 静态变量/类变量不是对象的属性,而是一个类的属 ...

  10. 在生成.net core 3.0程序时不包含nuget库

    在.net core 3.0中,默认的生成行为有了两个变化,一个是默认生成可执行文件,另一个是会复制依赖的Nuget项. 前一个变化会默认生成可执行的exe,用起来更加方便了.另一个变化可能是为了减少 ...