机器学习pipeline总结
# -*- coding: utf-8 -*-
"""scikit-learn introduction
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1quaJafg43SN7S6cNwKFr0_WYn2ELt4Ph
scikit-learn官方网站:https://scikit-learn.org/stable/
模块引入
"""
from sklearn import datasets
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
"""#分类:
- SVM(support vector machine):支持向量机
- svm.SVC()
###iris数据集
- iris feature: 花萼长度,花萼宽度,花瓣长度,花瓣宽度
- iris lable: 山鸢尾,杂色鸢尾,维吉尼亚鸢尾
"""
iris = datasets.load_iris()
print('iris feature\n', iris.data[0:5])
print('iris label\n', iris.target[0:5])
"""###创建模型"""
from sklearn import svm
clf = svm.SVC()
irisX = iris.data
irisY = iris.target
clf.fit(irisX, irisY)
irisPred = clf.predict(irisX)
clf.predict([[5.1,3.5,1.4,0.2]]) #刚刚的第1个数据
"""###评估指标
- accuracy
- precision
- recall
- F1
"""
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print('acc is ', accuracy_score(irisY, irisPred, normalize=False)/len(irisY))
print('precision is ', precision_score(irisY, irisPred, average='macro'))
print('recall is ', recall_score(irisY, irisPred, average='macro'))
print('F1 is ', f1_score(irisY, irisPred, average='macro'))
"""#回归
- 线性回归
- 模块:linear_model.LinearRegression()
###糖尿病数据集
"""
diabetes = datasets.load_diabetes()
diabetesX = np.array([[diabetes.data[i][0]] for i in range(0,diabetes.data.shape[0])])
diabetesY = diabetes.target
print('feature\n',diabetesX[:5])
print('label\n',diabetesY[:5])
"""###创建模型"""
from sklearn import svm, linear_model
regr = linear_model.LinearRegression()
regr.fit(diabetesX, diabetes.target)
diabetesPred = regr.predict(diabetesX)
regr.predict([[0.03807591]]) #对于原始数据的第一个值的预测结果
plt.scatter(diabetesX, diabetes.target) #原始数据的散点图
plt.plot(diabetesX, diabetesPred) #线性回归的折线图
"""###评价指标
- 均方误差(mse)
"""
from sklearn.metrics import mean_squared_error
print('mean squared error is ', mean_squared_error(diabetesY, diabetesPred))
"""#聚类
- k-means
###创建数据集
"""
from sklearn.datasets.samples_generator import make_blobs
clusterX, clusterY = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2], random_state=0)
plt.scatter(clusterX[:, 0], clusterX[:, 1])
"""###建立模型"""
from sklearn.cluster import KMeans
clu = KMeans(n_clusters=2, random_state=9)
clusterPredict = clu.fit_predict(clusterX)
plt.scatter(clusterX[:, 0], clusterX[:, 1], c=clusterPredict)
plt.show()
"""#模型评估
- cross validation 交叉验证
- 以iris数据集为例
"""
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.metrics import accuracy_score
from sklearn import svm
import warnings
warnings.filterwarnings('ignore')
clf = svm.SVC()
scores = cross_val_score(clf, irisX, irisY, cv=10, scoring='accuracy')
print('十折交叉验证分别的accuracy ', scores)
print('平均的accuracy ', sum(scores/10))
"""- 通过设置随机种子来进行十次十折交叉验证"""
from sklearn.model_selection import StratifiedKFold,KFold
accEachTime = []
for i in range(0,10):
clf = svm.SVC()
scores = cross_val_score(clf, irisX, irisY, cv=KFold(n_splits=10, random_state=i, shuffle=True), scoring='accuracy')
print(scores)
accEachTime.append(sum(scores/10))
print('每一次的accuracy值 ', accEachTime)
print('十次十折交叉验证的平均accuracy值 ', sum(accEachTime)/10)
机器学习pipeline总结的更多相关文章
- Spark Pipeline官方文档
ML Pipelines(译文) 官方文档链接:https://spark.apache.org/docs/latest/ml-pipeline.html 概述 在这一部分,我们将要介绍ML Pipe ...
- FPGA的过去,现在和未来
我们知道,相对于专业的ASIC,FPGA有上市时间和成本上的优势.另外,在大多数情况下,FPGA执行某些功能较之CPU上的软件操作更高效.这就是为什么我们认为它不但会运用在数据中心的服务器.交换器.存 ...
- 2015 Spark 将走向哪里?
在刚刚过去的spark submit上,Matei Zahara简单回顾了下2014年spark的发展,可用一个词来概括那就是"Amazing"!!! 那么2015年,spark ...
- gen语言
概率编程语言(PPL)领域正经历着机器学习技术快速发展带来的奇迹般的复兴.在短短的几年里,PPL 已经从一个模糊的统计研究领域发展出十几个活跃的开源方案.最近,麻省理工学院(MIT)的研究人员推出了一 ...
- SparkMLLib的简单学习
一. 简介 1. 机器学习中,可以将数据划分为连续数据和离散数据 a. 连续数据:可以取任何值,如房价 b. 离散数据:仅有少量特殊值,如一个房屋有2个或3个房间,但不能为2.75个房间 二. 创建向 ...
- 使用PyTorch进行迁移学习
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs) ...
- 使用spark ml pipeline进行机器学习
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...
- Spark2.0机器学习系列之2:基于Pipeline、交叉验证、ParamMap的模型选择和超参数调优
Spark中的CrossValidation Spark中采用是k折交叉验证 (k-fold cross validation).举个例子,例如10折交叉验证(10-fold cross valida ...
- spark ml pipeline构建机器学习任务
一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流 ...
随机推荐
- SpringBoot微服务电商项目开发实战 --- Kafka集成接入
kafka作为消息中间件的一款产品,她比较轻量级,在吞吐量方面很优秀,默认消息持久化到硬盘当中 168小时=7天,log.retention.hours=168,比较适合来做运营的统计.其他的不多讲, ...
- SpringBoot微服务电商项目开发实战 --- api接口安全算法、AOP切面及防SQL注入实现
上一篇主要讲了整个项目的子模块及第三方依赖的版本号统一管理维护,数据库对接及缓存(Redis)接入,今天我来说说过滤器配置及拦截设置.接口安全处理.AOP切面实现等.作为电商项目,不仅要求考虑高并发带 ...
- AOP框架Dora.Interception 3.0 [5]: 基于策略的拦截器注册方式
注册拦截器旨在解决如何将拦截器应用到目标方法的问题.在我看来,针对拦截器的注册应该是明确而精准的,也就是我们提供的注册方式应该让拦截器准确地应用到期望的目标方法上,不能多也不能少.如果注册的方式过于模 ...
- AndroidStudio初识
大家好,欢迎来到下码看花,伟大领袖毛爷爷曾经说过:“ ‘走马看花不如驻马看花,驻马看花不如下马看花.’我希望你们都要下马看花.”,比喻停下来,深入实际,认真调查研究,这就是咱们公众号名字的由来.与君初 ...
- 求连通块的面积 - BFS、DFS实现
本文以Leetcode中695.岛屿的最大面积题目为基础进行展开(题目
- .net core百万设备连接服务和硬件需求测试
随着物联网的普及,服务应用将面对大量物联设备处理:早期.NET在通讯上的处理能力一直给人的印像并不怎样,但net core经历过大量的优化后在各个模块的处理性能都有着比较出色的提升,针对网络方向的处理 ...
- 天下代码一大抄,整个案例的搬是什么鬼!疑似冒充蚂蚁金服高级Java开发工程师?你大爷
写在开始 上班前的第一件事,就是码云看看有什么消息,回复下网友的问题.如果看到喜欢的项目会点进去瞅瞅,然后就开始一天的工作. 然而,这一天的工作并不开心,一个今日热门项目让自己很恼火,一开始感觉并没有 ...
- nginx将http升级到https并且同时支持http和https两种请求、http自动转向https
1.http升级到https 1.1.检查 Nginx 是否支持 SSL /usr/local/nginx/sbin/nginx -V configure arguments中是否有--with-ht ...
- socket互传对象以及IO流的顺序问题
UserInfo.java package com.company.s6; import java.io.Serializable; public class UserInfo implements ...
- JavaScript 自定义html元素鼠标右键菜单
自定义html元素鼠标右键菜单 实现思路 在触发contextmenu事件时,取消默认行为(也就是阻止浏览器显示自带的菜单),获取右键事件对象,来确定鼠标的点击位置,作为显示菜单的left和top值 ...