聚合查询(Bucket聚合)

上一篇讲了Elasticsearch聚合查询中的Metric聚合Elasticsearch(8) --- 聚合查询(Metric聚合)

说明 本文主要参考于Elasticsearch 官方文档 7.3版本。 Bucket Aggregations

概念Bucket 可以理解为一个桶,它会遍历文档中的内容,凡是符合某一要求的就放入一个桶中,分桶相当与 SQL 中的 group by

这篇博客讲的桶的关键字有:Terms AggregationFilter AggregationHistogram AggregationRange AggregationDate Aggregation

一、创建索引、数据

1、创建索引

DELETE cars
PUT cars
{
"mappings": {
"properties": {
"price": {
"type":"long"
},
"color": {
"type":"keyword"
},
"brand": {
"type":"keyword"
},
"sellTime": {
"type":"date"
}
}
}
}

属性字段:价格、颜色、品牌、销售时间

2、添加索引数据

POST /cars/_bulk
{ "index": {}}
{ "price" : 80000, "color" : "red", "brand" : "BMW", "sellTime" : "2014-01-28" }
{ "index": {}}
{ "price" : 85000, "color" : "green", "brand" : "BMW", "sellTime" : "2014-02-05" }
{ "index": {}}
{ "price" : 120000, "color" : "green", "brand" : "Mercedes", "sellTime" : "2014-03-18" }
{ "index": {}}
{ "price" : 105000, "color" : "blue", "brand" : "Mercedes", "sellTime" : "2014-04-02" }
{ "index": {}}
{ "price" : 72000, "color" : "green", "brand" : "Audi", "sellTime" : "2014-05-19" }
{ "index": {}}
{ "price" : 60000, "color" : "red", "brand" : "Audi", "sellTime" : "2014-06-05" }
{ "index": {}}
{ "price" : 40000, "color" : "red", "brand" : "Audi", "sellTime" : "2014-07-01" }
{ "index": {}}
{ "price" : 35000, "color" : "blue", "brand" : "Honda", "sellTime" : "2014-08-12" }

3、查看是否成功

命令

GET /_cat/count/cars?v

可以看到该索引存在,并且有8条文档数据。

二、Terms Aggregation

官方7.3文档Terms Aggregation

概念 : 根据某一项的每个唯一的值的聚合。

1、根据品牌分桶

GET cars/_search?size=0
{
"aggs" : {
"genres" : {
"terms" : { "field" : "brand" }
}
}
}

返回结果

2、分桶后只显示文档数量前3的桶

GET cars/_search?size=0
{
"aggs" : {
"cars" : {
"terms" : {
"field" : "brand",
"size" : 3
}
}
}
}

返回

从图中可以看出文档数量前三的桶。

3、分桶后排序

GET cars/_search?size=0
{
"aggs" : {
"genres" : {
"terms" : {
"field" : "brand",
"order" : { "_count" : "asc" }
}
}
}
}

4、显示文档数量大于3的桶

GET cars/_search?size=0
{
"aggs" : {
"brands" : {
"terms" : {
"field" : "brand",
"min_doc_count": 3
}
}
}
}

5、使用精确指定的词条进行分桶

GET /cars/_search?size=0
{
"aggs" : {
"JapaneseCars" : {
"terms" : {
"field" : "brand",
"include" : ["BMW", "Audi"]
}
}
}
}

这里也只展示些常用的,更多有关Terms Aggregation那就看官网吧。

三、 Filter Aggregation

官方文档Filter AggregationFilters Aggregation

Filter概念:指具体的域和具体的值,可以说是在 Terms Aggregation 的基础上进行了过滤,只对特定的值进行了聚合。

1、过滤获取品牌为BMW的桶,并求该桶平均值

GET /cars/_search?size=0
{
"aggs" : {
"brands" : {
"filter" : { "term": { "brand": "BMW" } },
"aggs" : {
"avg_price" : { "avg" : { "field" : "price" } }
}
}
}
}

返回

2、过滤获取品牌为BMW的或者color为绿色的桶

Filters概念 : Filter Aggreagtion 只能指定一个过滤条件,响应也只是单个桶。如果想要只对多个特定值进行聚合,使用 Filter Aggreagtion 只能进行多次请求。

而使用 Filters Aggreagation 就可以解决上述的问题,它可以指定多个过滤条件,也是说可以对多个特定值进行聚合。

GET /cars/_search?size=0
{
"size": 0,
"aggs" : {
"cars" : {
"filters" : {
"filters" : {
"colorBucket" : { "match" : { "color" : "red" }},
"brandBucket" : { "match" : { "brand" : "Audi" }}
}
}
}
}
}

返回

四、Histogram Aggreagtion

官方文档Histogram Aggreagtion

概念 Histogram与Terms聚合类似,都是数据分组,区别是Terms是按照Field的值分组,而Histogram可以按照指定的间隔对Field进行分组

1、根据价格区间为10000分桶

GET /cars/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 10000
}
}
}
}

返回

2、根据价格区间为10000分桶,同时如果桶中没有文档就不显示桶

上面的分桶我们可以发现价格在5000~6000 的文档没有也显示为0,我们想把如果桶中没有文档就不显示该桶

GET /cars/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 10000,
"min_doc_count" : 1
}
}
}
}

返回

五、Range Aggregation

官方文档Range Aggregation

概念: 根据用户传递的范围参数作为桶,进行相应的聚合。在同一个请求中,可以传递多组范围,每组范围作为一个桶。

1、根据价格区间分桶

GET /cars/_search?size=0
{
"aggs" : {
"price_ranges" : {
"range" : {
"field" : "price",
"ranges" : [
{ "to" : 50000 },
{ "from" : 5000, "to" : 80000 },
{ "from" : 80000 }
]
}
}
}
}

返回

我们也可以指定key的名称

GET /cars/_search?size=0
{
"aggs" : {
"price_ranges" : {
"range" : {
"field" : "price",
"ranges" : [
{ "key" : "xiaoyu", "to" : 50000 },
{ "key" : "baohan", "from" : 5000, "to" : 80000 },
{ "key" : "dayu", "from" : 80000 }
]
}
}
}
}

返回

六、 Date Aggregation

官方文档Date Histogram AggregationDate Range Aggregation

Date Histogram概念 针对于时间格式数据的直方图聚合,基本的特性与 Histogram Aggregation 一致。

1、按月分桶显示每个月的销量

注意 官方文档这里不是interval而是calendar_interval,但是按照这样操作会报错,因为我看的7.3的文档,而我部署的es是7.1版本。说明这个地方7.3有了改进。

POST /cars/_search?size=0
{
"aggs" : {
"sales_over_time" : {
"date_histogram" : {
"field" : "sellTime",
"interval" : "1M",
"format" : "yyyy-MM-dd"
}
}
}
}

返回

2、根据指定时间区间分桶

Date Range概念 :针对于时间格式数据的范围聚合,基本的特性与 Range Aggreagtion 一致。

POST /cars/_search?size=0
{
"aggs": {
"range": {
"date_range": {
"field": "sellTime",
"format": "MM-yyyy",
"ranges": [
{ "to": "now-10M/M" },
{ "from": "now-10M/M" }
]
}
}
}
}

上面的意思是10个月前的分为一个桶,10个月前之后的分为一个桶

参考

1、Elasticsearch核心技术与实战---阮一鸣(eBay Pronto平台技术负责人

2、ES7.3版官方聚合查询API

3、Elasticsearch聚合——Bucket Aggregations

4、ElasticSearch-聚合bucket

 我相信,无论今后的道路多么坎坷,只要抓住今天,迟早会在奋斗中尝到人生的甘甜。抓住人生中的一分一秒,胜过虚度中的一月一年!(14)

Elasticsearch(9) --- 聚合查询(Bucket聚合)的更多相关文章

  1. Elasticsearch(8) --- 聚合查询(Metric聚合)

    Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...

  2. ElasticSearch的高级复杂查询:非聚合查询和聚合查询

    一.非聚合复杂查询(这儿展示了非聚合复杂查询的常用流程) 查询条件QueryBuilder的构建方法 1.1 精确查询(必须完全匹配上,相当于SQL语句中的“=”) ① 单个匹配 termQuery ...

  3. ES[7.6.x]学习笔记(十)聚合查询

    聚合查询,它是在搜索的结果上,提供的一些聚合数据信息的方法.比如:求和.最大值.平均数等.聚合查询的类型有很多种,每一种类型都有它自己的目的和输出.在ES中,也有很多种聚合查询,下面我们看看聚合查询的 ...

  4. Elasticsearch使用系列-基本查询和聚合查询+sql插件

    Elasticsearch使用系列-ES简介和环境搭建 Elasticsearch使用系列-ES增删查改基本操作+ik分词 Elasticsearch使用系列-基本查询和聚合查询+sql插件 Elas ...

  5. django基础之day04,聚合查询和分组查询

    聚合查询: 聚合函数必须用在分组之后,没有分组其实默认整体就是一组 Max Min Sum Avg Count 1.分组的关键字是:aggretate 2.导入模块 from django.db.mo ...

  6. Es学习第九课, 聚合查询和复合查询

    ES除了实现前几课的基本查询,也可以实现类似关系型数据库的聚合查询,如平均值sum.最小值min.最大值max等等 我们就用上一课的数据作为参考来举例 聚合查询 sum聚合 sum是一个求累加值的聚合 ...

  7. SQL基础教程(第2版)第3章 聚合与排序:3-1 对表进行聚合查询

    3-1 对表进行聚合查询 ● 使用聚合函数对表中的列进行计算合计值或者平均值等的汇总操作.● 通常,聚合函数会对NULL以外的对象进行汇总.但是只有COUNT函数例外,使用COUNT(*)可以查出包含 ...

  8. Django学习——图书相关表关系建立、基于双下划线的跨表查询、聚合查询、分组查询、F查询、Q查询、admin的使用、使用脚本调用Django、Django查看源生sql

    0 图书相关表关系建立 1.5个表 2.书籍表,作者表,作者详情表(垂直分表),出版社表,书籍和作者表(多对多关系) 一对一 多对多 本质都是一对多 外键关系 3.一对一的关系,关联字段可以写在任意一 ...

  9. java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用

    java连接elasticsearch 进行聚合查询进行相应操作 一:对单个字段进行分组求和 1.表结构图片: 根据任务id分组,分别统计出每个任务id下有多少个文字标题 .SQL:select id ...

随机推荐

  1. ansible之数据提取与Juniper实例演示

    一.Ansible列表两种表达方式 基于YAML的列表 my_list: - a - b - c - d 基于Json格式的列表 {"my_list":[ "a" ...

  2. spark通过JDBC读取外部数据库,过滤数据

    官网链接: http://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases http:// ...

  3. python+unittest框架第四天unittest之断言(一)

    unittest中的测试断言分两天总结,hhh其实内容不多,就是懒~ 断言的作用是什么?  答:设置测试断言以后,能帮助我们判断测试用例执行结果. 我们先看下unittest支持的断言有哪些: 对上面 ...

  4. 缓冲区溢出实例(一)--Windows

    一.基本概念 缓冲区溢出:当缓冲区边界限制不严格时,由于变量传入畸形数据或程序运行错误,导致缓冲区被填满从而覆盖了相邻内存区域的数据.可以修改内存数据,造成进程劫持,执行恶意代码,获取服务器控制权限等 ...

  5. MonkeyRunner 第一天

    1.安装集成Android SDK的环境(如Eclipse),主要是为了android的模拟器,安装python编译环境,MonkeyRunner是基于Jython 2.使用Eclipse打开Andr ...

  6. linux环境部署,docker如何安装redis

    安装步骤 1. 安装Redis 通过docker search redis和docker pull redis下载redis镜像 2. 新建挂载配置文件夹 新建data和conf两个文件夹,位置随意. ...

  7. JavaScript数组方法大全(第一篇)

    数组方法大全(第一篇) 注意:第一次写博客有点小紧张,如有错误欢迎指出,如有雷同纯属巧合,本次总结参考书籍JavaScript权威指南,有兴趣的小伙伴可以去翻阅一下哦 join()方法 该方法是将数组 ...

  8. springmvc集成swaggerui

    这里先写下需要的pom.xml配置(我引用的2.4.0,相对稳定) 在集成springfox-swagger2之前,我也尝试着集成了swagger-springmvc,方式差不多,但是swagger- ...

  9. 关于事务,事务的特性,spring事务的传播特性

    1.什么是事务: 事务是程序中一系列严密的操作,所有操作执行必须成功完成,否则在每个操作所做的更改将会被撤销,这也是事务的原子性(要么成功,要么失败). 2.事务特性: 事务特性分为四个:原子性(At ...

  10. 9406LaTeX公式

    需要注意的是: 1.本文只对第四章排版数学公式进行简单整理 2.本文大量内容直接引自官网,尤其是涉及4.开头的标题,为方便读者查阅对比,就不一一删改和引注,你可以点此访问官网对应内容,也可以点此下载我 ...