前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧。

安装目录下主要有 flink-conf.yaml 配置、日志的配置文件、zk 配置、Flink SQL Client 配置。

flink-conf.yaml

基础配置

# jobManager 的IP地址
jobmanager.rpc.address: localhost # JobManager 的端口号
jobmanager.rpc.port: 6123 # JobManager JVM heap 内存大小
jobmanager.heap.size: 1024m # TaskManager JVM heap 内存大小
taskmanager.heap.size: 1024m # 每个 TaskManager 提供的任务 slots 数量大小 taskmanager.numberOfTaskSlots: 1 # 程序默认并行计算的个数
parallelism.default: 1 # 文件系统来源
# fs.default-scheme

高可用性配置

# 可以选择 'NONE' 或者 'zookeeper'.
# high-availability: zookeeper # 文件系统路径,让 Flink 在高可用性设置中持久保存元数据
# high-availability.storageDir: hdfs:///flink/ha/ # zookeeper 集群中仲裁者的机器 ip 和 port 端口号
# high-availability.zookeeper.quorum: localhost:2181 # 默认是 open,如果 zookeeper security 启用了该值会更改成 creator
# high-availability.zookeeper.client.acl: open

容错和检查点 配置

# 用于存储和检查点状态
# state.backend: filesystem # 存储检查点的数据文件和元数据的默认目录
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints # savepoints 的默认目标目录(可选)
# state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints # 用于启用/禁用增量 checkpoints 的标志
# state.backend.incremental: false

web 前端配置

# 基于 Web 的运行时监视器侦听的地址.
#jobmanager.web.address: 0.0.0.0 # Web 的运行时监视器端口
rest.port: 8081 # 是否从基于 Web 的 jobmanager 启用作业提交
# jobmanager.web.submit.enable: false

高级配置


# io.tmp.dirs: /tmp # 是否应在 TaskManager 启动时预先分配 TaskManager 管理的内存
# taskmanager.memory.preallocate: false # 类加载解析顺序,是先检查用户代码 jar(“child-first”)还是应用程序类路径(“parent-first”)。 默认设置指示首先从用户代码 jar 加载类
# classloader.resolve-order: child-first # 用于网络缓冲区的 JVM 内存的分数。 这决定了 TaskManager 可以同时拥有多少流数据交换通道以及通道缓冲的程度。 如果作业被拒绝或者您收到系统没有足够缓冲区的警告,请增加此值或下面的最小/最大值。 另请注意,“taskmanager.network.memory.min”和“taskmanager.network.memory.max”可能会覆盖此分数 # taskmanager.network.memory.fraction: 0.1
# taskmanager.network.memory.min: 67108864
# taskmanager.network.memory.max: 1073741824

Flink 集群安全配置

# 指示是否从 Kerberos ticket 缓存中读取
# security.kerberos.login.use-ticket-cache: true # 包含用户凭据的 Kerberos 密钥表文件的绝对路径
# security.kerberos.login.keytab: /path/to/kerberos/keytab # 与 keytab 关联的 Kerberos 主体名称
# security.kerberos.login.principal: flink-user # 以逗号分隔的登录上下文列表,用于提供 Kerberos 凭据(例如,`Client,KafkaClient`使用凭证进行 ZooKeeper 身份验证和 Kafka 身份验证)
# security.kerberos.login.contexts: Client,KafkaClient

Zookeeper 安全配置

# 覆盖以下配置以提供自定义 ZK 服务名称
# zookeeper.sasl.service-name: zookeeper # 该配置必须匹配 "security.kerberos.login.contexts" 中的列表(含有一个)
# zookeeper.sasl.login-context-name: Client

HistoryServer

# 你可以通过 bin/historyserver.sh (start|stop) 命令启动和关闭 HistoryServer

# 将已完成的作业上传到的目录
# jobmanager.archive.fs.dir: hdfs:///completed-jobs/ # 基于 Web 的 HistoryServer 的地址
# historyserver.web.address: 0.0.0.0 # 基于 Web 的 HistoryServer 的端口号
# historyserver.web.port: 8082 # 以逗号分隔的目录列表,用于监视已完成的作业
# historyserver.archive.fs.dir: hdfs:///completed-jobs/ # 刷新受监控目录的时间间隔(以毫秒为单位)
# historyserver.archive.fs.refresh-interval: 10000

查看下另外两个配置 slaves / master

2、slaves

里面是每个 worker 节点的 IP/Hostname,每一个 worker 结点之后都会运行一个 TaskManager,一个一行。

localhost

3、masters

host:port

localhost:8081

4、zoo.cfg

# 每个 tick 的毫秒数
tickTime=2000 # 初始同步阶段可以采用的 tick 数
initLimit=10 # 在发送请求和获取确认之间可以传递的 tick 数
syncLimit=5 # 存储快照的目录
# dataDir=/tmp/zookeeper # 客户端将连接的端口
clientPort=2181 # ZooKeeper quorum peers
server.1=localhost:2888:3888
# server.2=host:peer-port:leader-port

5、日志配置

Flink 在不同平台下运行的日志文件

log4j-cli.properties
log4j-console.properties
log4j-yarn-session.properties
log4j.properties
logback-console.xml
logback-yarn.xml
logback.xml

sql-client-defaults.yaml

execution:
# 'batch' or 'streaming' execution
type: streaming
# allow 'event-time' or only 'processing-time' in sources
time-characteristic: event-time
# interval in ms for emitting periodic watermarks
periodic-watermarks-interval: 200
# 'changelog' or 'table' presentation of results
result-mode: changelog
# parallelism of the program
parallelism: 1
# maximum parallelism
max-parallelism: 128
# minimum idle state retention in ms
min-idle-state-retention: 0
# maximum idle state retention in ms
max-idle-state-retention: 0 deployment:
# general cluster communication timeout in ms
response-timeout: 5000
# (optional) address from cluster to gateway
gateway-address: ""
# (optional) port from cluster to gateway
gateway-port: 0

Flink sql client :你可以从官网这里了解 https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/sqlClient.html

总结

本文拿安装目录文件下的配置文件讲解了下 Flink 目录下的所有配置。

你也可以通过官网这里学习更多:https://ci.apache.org/projects/flink/flink-docs-stable/ops/config.html

关注我

本篇文章地址是:http://www.54tianzhisheng.cn/2018/10/27/flink-config/

微信公众号:zhisheng

另外我自己整理了些 Flink 的学习资料,目前已经全部放到微信公众号(zhisheng)了,你可以回复关键字:Flink 即可无条件获取到。另外也可以加我微信 你可以加我的微信:yuanblog_tzs,探讨技术!

更多私密资料请加入知识星球!

Github 代码仓库

https://github.com/zhisheng17/flink-learning/

以后这个项目的所有代码都将放在这个仓库里,包含了自己学习 flink 的一些 demo 和博客

博客

1、Flink 从0到1学习 —— Apache Flink 介绍

2、Flink 从0到1学习 —— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门

3、Flink 从0到1学习 —— Flink 配置文件详解

4、Flink 从0到1学习 —— Data Source 介绍

5、Flink 从0到1学习 —— 如何自定义 Data Source ?

6、Flink 从0到1学习 —— Data Sink 介绍

7、Flink 从0到1学习 —— 如何自定义 Data Sink ?

8、Flink 从0到1学习 —— Flink Data transformation(转换)

9、Flink 从0到1学习 —— 介绍 Flink 中的 Stream Windows

10、Flink 从0到1学习 —— Flink 中的几种 Time 详解

11、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 ElasticSearch

12、Flink 从0到1学习 —— Flink 项目如何运行?

13、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Kafka

14、Flink 从0到1学习 —— Flink JobManager 高可用性配置

15、Flink 从0到1学习 —— Flink parallelism 和 Slot 介绍

16、Flink 从0到1学习 —— Flink 读取 Kafka 数据批量写入到 MySQL

17、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 RabbitMQ

18、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 HBase

19、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 HDFS

20、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Redis

21、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Cassandra

22、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Flume

23、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 InfluxDB

24、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 RocketMQ

25、Flink 从0到1学习 —— 你上传的 jar 包藏到哪里去了

26、Flink 从0到1学习 —— 你的 Flink job 日志跑到哪里去了

27、阿里巴巴开源的 Blink 实时计算框架真香

28、Flink 从0到1学习 —— Flink 中如何管理配置?

29、Flink 从0到1学习—— Flink 不可以连续 Split(分流)?

30、Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文

31、Flink 架构、原理与部署测试

32、为什么说流处理即未来?

33、OPPO 数据中台之基石:基于 Flink SQL 构建实时数据仓库

34、流计算框架 Flink 与 Storm 的性能对比

35、Flink状态管理和容错机制介绍

36、Apache Flink 结合 Kafka 构建端到端的 Exactly-Once 处理

37、360深度实践:Flink与Storm协议级对比

38、如何基于Flink+TensorFlow打造实时智能异常检测平台?只看这一篇就够了

39、Apache Flink 1.9 重大特性提前解读

40、Flink 全网最全资源(视频、博客、PPT、入门、实战、源码解析、问答等持续更新)

41、Flink 灵魂两百问,这谁顶得住?

42、Flink 从0到1学习 —— 如何使用 Side Output 来分流?

43、你公司到底需不需要引入实时计算引擎?

44、一文让你彻底了解大数据实时计算引擎 Flink

源码解析

1、Flink 源码解析 —— 源码编译运行

2、Flink 源码解析 —— 项目结构一览

3、Flink 源码解析—— local 模式启动流程

4、Flink 源码解析 —— standalone session 模式启动流程

5、Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动

6、Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Task Manager 启动

7、Flink 源码解析 —— 分析 Batch WordCount 程序的执行过程

8、Flink 源码解析 —— 分析 Streaming WordCount 程序的执行过程

9、Flink 源码解析 —— 如何获取 JobGraph?

10、Flink 源码解析 —— 如何获取 StreamGraph?

11、Flink 源码解析 —— Flink JobManager 有什么作用?

12、Flink 源码解析 —— Flink TaskManager 有什么作用?

13、Flink 源码解析 —— JobManager 处理 SubmitJob 的过程

14、Flink 源码解析 —— TaskManager 处理 SubmitJob 的过程

15、Flink 源码解析 —— 深度解析 Flink Checkpoint 机制

16、Flink 源码解析 —— 深度解析 Flink 序列化机制

17、Flink 源码解析 —— 深度解析 Flink 是如何管理好内存的?

18、Flink Metrics 源码解析 —— Flink-metrics-core

19、Flink Metrics 源码解析 —— Flink-metrics-datadog

20、Flink Metrics 源码解析 —— Flink-metrics-dropwizard

21、Flink Metrics 源码解析 —— Flink-metrics-graphite

22、Flink Metrics 源码解析 —— Flink-metrics-influxdb

23、Flink Metrics 源码解析 —— Flink-metrics-jmx

24、Flink Metrics 源码解析 —— Flink-metrics-slf4j

25、Flink Metrics 源码解析 —— Flink-metrics-statsd

26、Flink Metrics 源码解析 —— Flink-metrics-prometheus

26、Flink Annotations 源码解析

27、Flink 源码解析 —— 如何获取 ExecutionGraph ?

28、大数据重磅炸弹——实时计算框架 Flink

29、Flink Checkpoint-轻量级分布式快照

30、Flink Clients 源码解析

原文出处:zhisheng的博客,欢迎关注我的公众号:zhisheng

Flink 从 0 到 1 学习 —— Flink 配置文件详解的更多相关文章

  1. Flink 从0到1学习—— Flink 不可以连续 Split(分流)?

    前言 今天上午被 Flink 的一个算子困惑了下,具体问题是什么呢? 我有这么个需求:有不同种类型的告警数据流(包含恢复数据),然后我要将这些数据流做一个拆分,拆分后的话,每种告警里面的数据又想将告警 ...

  2. Flink 从0到1学习 —— Flink 中如何管理配置?

    前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一 ...

  3. Flink 从 0 到 1 学习 —— Flink Data transformation(转换)

    toc: true title: Flink 从 0 到 1 学习 -- Flink Data transformation(转换) date: 2018-11-04 tags: Flink 大数据 ...

  4. Elasticsearch 学习之配置文件详解

    Elasticsearch配置文件##################### Elasticsearch Configuration Example ##################### # # ...

  5. Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文

    前言 之前也分享了不少自己的文章,但是对于 Flink 来说,还是有不少新入门的朋友,这里给大家分享点 Flink 相关的资料(国外数据 pdf 和流处理相关的 Paper),期望可以帮你更好的理解 ...

  6. Flink 从 0 到 1 学习 —— 如何自定义 Data Sink ?

    前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...

  7. Flink 从 0 到 1 学习 —— 如何自定义 Data Source ?

    前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...

  8. 《从0到1学习Flink》—— Flink 配置文件详解

    前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...

  9. 《从0到1学习Flink》—— Flink 写入数据到 Kafka

    前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用 ...

随机推荐

  1. OpenGL入门第一天:环境

    本文是个人学习记录,学习建议看教程 https://learnopengl-cn.github.io/ 非常感谢原作者JoeyDeVries和各位翻译提供的优质教程 近况(牢骚 这几天教母校初中的OI ...

  2. EVE-NG入门篇

    目录 一.EVE-NG配置要求 二.EVE-NG 安装 三.基于OVA的安装步骤 四.导入设备介绍 五.启动设备 六.与secure CRT关联 七.常见问题 一.EVE-NG配置要求 1.最低配置 ...

  3. 基于注解的SpringAOP源码解析(三)

    注意,读完本篇文章需要很长很长时间 在之前的2篇文章:AOP源码分析(一)AOP源码分析(二) 中,我们搭建了SpringAOP源码分析的环境,介绍了@EnableAspectJAutoProxy注解 ...

  4. springboot中的springSession的存储和获取

    利用redis进行springSession的存储: 存储: // 在session中保存用户信息 HttpSession session = httpRequest.getSession(true) ...

  5. SpringBoot Mybatis解决使用PageHelper一对多分页问题

    一般来说使用 PageHelper 能解决绝大多数的分页问题,相关使用可在博客园上搜索,能找到很多资料. 之前我在做SpringBoot 项目时遇到这样一个问题,就是当一对多联合查询时需要分页的情况下 ...

  6. 为了完成这个功能,我竟然用5行代码制作了一个EXE可执行程序

    由于用户访问我们某个网址的路径比较长,最后我们确定了在桌面添加快捷入口的方案,让用户点击快捷入口直接进入直接的网址,而且这个快捷入口要带有指定的logo(排除了新建url快捷方式的方案),所以我决定写 ...

  7. 设计模式(C#)——06桥接模式

    推荐阅读:  我的CSDN  我的博客园  QQ群:704621321       在早先,几乎每个手机的充电器接口都是不同的.每个型号的手机都有一个充电器,此时我们把充电器作为一个抽象类,抽象类中提 ...

  8. 学习HTML之后的感受

    自从学习了HTML之后,感觉自己每天面对密密麻麻的代码,都有了一种密集恐惧症的感觉,作为一个计算机行业的小白,我十分渴望在计算机行业有所建树,以前计算机对我来说是一个神秘的领域.现在我正在努力进入这个 ...

  9. 转载-Spring Boot应用监控实战

    概述 之前讲过Docker容器的可视化监控,即监控容器的运行情况,包括 CPU使用率.内存占用.网络状况以及磁盘空间等等一系列信息.同样利用SpringBoot作为微服务单元的实例化技术选型时,我们不 ...

  10. Zookeeper之Leader选举过程

    Leader在集群中是一个非常重要的角色,负责了整个事务的处理和调度,保证分布式数据一致性的关键所在.既然Leader在ZooKeeper集群中这么重要所以一定要保证集群在任何时候都有且仅有一个Lea ...