区间修改+区间查询(线段树板子题)

另外因为1e9内的数开5次根号必定为1或0,所以我们可以提前打表i<=sqrt[1e9], s[i]=sqrt(i)。这样每次改值不必再调用系统的sqrt;

另外这个题有两个坑点,m<=200000,n<=100000,用cout会爆t,还有HYSBZ是Ubuntu评测要把I64d改成lld......(我调了一晚上发现是Ubuntu的评测机的时候....)

题目链接:

https://www.lydsy.com/JudgeOnline/problem.php?id=3211

打码:

#include <iostream>
#include<stdio.h>
#include<cmath>
#define ll long long
using namespace std;
const int maxn=1e5+70;
int n,m,tt,t1,t2,t3,a[maxn],add[maxn<<2],s[maxn];
ll sum[maxn<<2];
void up(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
add[rt]=add[rt<<1]&&add[rt<<1|1];
}
void build(int l,int r,int rt)
{
if(l==r){
sum[rt]=a[l];
return;
}
int m=(l+r)>>1;
build(l,m,rt<<1);
build(m+1,r,rt<<1|1);
up(rt);
}
void update(int L,int R,int l,int r,int rt)
{
if(l==r){
if(sum[rt]>tt)
sum[rt]=sqrt(sum[rt]);
else
sum[rt]=s[sum[rt]];
if(sum[rt]<=1)add[rt]=1;
return;
}
int m=(l+r)>>1;
if(L<=m&&add[rt<<1]==0)update(L,R,l,m,rt<<1);
if(R>m&&add[rt<<1|1]==0)update(L,R,m+1,r,rt<<1|1);
up(rt);
}
ll query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R){
return sum[rt];
}
int m=(l+r)>>1;
ll ans=0;
if(L<=m){
ans+=query(L,R,l,m,rt<<1);
}
if(m<R){
ans+=query(L,R,m+1,r,rt<<1|1);
}
return ans;
}
int main()
{
tt=sqrt(1000000000);
for(int i=0;i<=tt;i++){
s[i]=sqrt(i);
}
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
build(1,n,1);
scanf("%d",&m);
for(int j=0;j<m;j++){
scanf("%d%d%d",&t1,&t2,&t3);
if(t1==1)
printf("%lld\n",query(t2,t3,1,n,1));
else if(t1==2)
update(t2,t3,1,n,1);
}
return 0;
}

开根号 HYSBZ - 3211的更多相关文章

  1. 刷题向》关于线段树的区间开根号 BZOJ3211(NORMAL+)

    这是一道关于线段树的区间开根号的裸题,没什么好讲的. 值得注意的是,因为有区间开根号的性质,所以我们每一次更改操作只能把更改区间所覆盖的所有元素全部查找,当然你直接找效率明显爆炸... 能够注意到,指 ...

  2. 用C语言将一个数开根号后再取倒数的方法

    在上学的时候,曾经看过有人写过这样的算法,就是将一个数开根号后再取倒数的算法,我本人也觉得十分巧妙,于是就将它积累了下来,让我们来看看是怎么回事: #include <stdio.h> # ...

  3. hdu 4027 Can you answer these queries? 线段树区间开根号,区间求和

    Can you answer these queries? Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/sho ...

  4. HDU 5828 Rikka with Sequence(线段树 开根号)

    Rikka with Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  5. luogu P4145 上帝造题的七分钟2 / 花神游历各国 维护区间和&&区间开根号

    因为开根号能使数字减小得非常快 所以开不了几次(6次?)很大的数就会变成1..... 所以我们可以维护区间最大值,若最大值>1,则继续递归子树,暴力修改叶节点,否则直接return (好像也可以 ...

  6. 二分法和牛顿迭代实现开根号函数:OC的实现

    最近有人贴出BAT的面试题,题目链接. 就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法和牛顿迭代,现在用OC的方法实现如下: 第一:二分法实现 -(double)sqr ...

  7. java实现开根号的运算

    面试的时候,偶然被问到,开根号的实现,虽然给面试官讲解了思路,但是没有实际实现过,今天闲来无事,就把自己的思路写一下,做个笔记. 如果某个数字正好可以开根号为2个整数,例如1,4,9等,那就很简单了. ...

  8. Java实现开根号运算(不使用数组和String)

    使用Java自己实现开根号运算,网上也有不少代码,多数都使用String或者数组.这里写一段只使用double基础数据类型实现的方法. private static double sqrt(int n ...

  9. C++ 2(将类分文件) //点和圆的关系 //设计一个圆形类 和一个点类 计算点和圆的关系 //点到圆心的距离 == 半径 点在圆上 //点到圆心的距离 > 半径 点在圆外 //点到圆心的距离 < 半径 点在圆内 //点到圆心的距离 获取 ....... (x1 -x2)^2 + (y1-y2)^2 开根号 和半径对比 // 计算 可以 两边同时 平方

    1 源文件 main.cpp 2 //点和圆的关系 3 //设计一个圆形类 和一个点类 计算点和圆的关系 4 //点到圆心的距离 == 半径 点在圆上 5 //点到圆心的距离 > 半径 点在圆外 ...

随机推荐

  1. Python列表的深度排序

    实例1:>>>L = [2,3,1,4]>>>L.sort()>>>L>>>[1,2,3,4] 实例2:>>> ...

  2. Angular2+之使用FormGroup、FormBuilder和Validators对象控制表单(取值、赋值、校验和是否可编辑等)

    1.要使用Angular自带的表单控制需要先引入相关模块(.ts文件): import { FormGroup, //表单对象类 FormBuilder, //表单生成工具类 Validators} ...

  3. Maven配置JRE版本

    Maven配置JRE版本 apache-maven-3.5.0\conf\settings.xml <profiles> <profile> <id>develop ...

  4. 两台CentOS6.5 在不同机器上互联

    准备工作 1.安装vmware及虚拟机centos6.5: 2.将安装好的centos6.5复制一份,在另一台机器上拷贝. 要进行不同机器上虚拟机的互相通信,需要用桥接模式进行互联.如下图,对vmwa ...

  5. Unicode 和 UTF-8 之间的关系

    一.ASCII 码 我们知道,计算机内部,所有信息最终都是一个二进制值.每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte).也就是说,一个 ...

  6. Python 元组(Tuple)操作详解

    Python的元组与列表类似,不同之处在于元组的元素不能修改,元组使用小括号, 列表使用方括号,元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可 一.创建元组 代码如下: tup1 = (' ...

  7. 0基础学Java快速扫盲指南,月入2W的基础

    学Java,掌握一些基本的概念是第一步,本文简单为大家介绍一些扫盲级别的内容,希望帮助小白快速入门. 一.基本概念 JVM:java虚拟机,负责将编译产生的字节码转换为特定机器代码,实现一次编译多处执 ...

  8. vc++中代码段的免杀

    一.文件特征码定位: 一般我们先用MyCCL把被查杀文件的文件特征码定位出来,然后用C32判断定位出来的这个特征码是代码还 是字符串,或者是输入表.输出表.版权信息等…定位在不同的地方,就要用不同的方 ...

  9. dnn文本分类

    简介 文本分类任务根据给定一条文本的内容,判断该文本所属的类别,是自然语言处理领域的一项重要的基础任务.具体的,本任务是对文本quey进行分类,任务流程如下: 收集用户query数据. 清洗,标记. ...

  10. 不安分的管家——Jenkins

    占个位,持续补充. 一.使用Jenkins进行自动化部署 一直以来关于xx框架/中间件的技术博客有个奇怪的事情.这类文章特点大而全,重复率高,读者阅读完毕基本从安装到放弃. 作为一个使用者,我只是为了 ...