Luogu P5298 [PKUWC2018]Minimax
好劲的题目啊,根本没往线段树合并方面去想啊
首先每种权值都有可能出现,因此我们先排个序然后一个一个求概率
由于此时数的值域变成\([1,m]\)(离散以后),我们可以设一个DP:\(f_{x,i}\)表示节点\(x\)的权值为\(i\)的概率
转移的话分\(x\)有几个子节点讨论,若没有或是只有一个都是随便转移的
考虑如果有两个,记为\(lc\)和\(rc\),显然我们可以列出转移方程(此时\(i\)在左儿子中,右儿子同理):
\]
我们发现这个式子有一些特征:它转移要乘上的是一段前缀和与一段后缀和,这个如果我们用线段树来维护会很好处理
然后由于每个数只会在一棵子树里,换句话说每个数在每个节点的概率只会造成一次的贡献
更妙的是,我们发现一个数造成贡献的时候由于这一段值域区间乘上的数都是一样的,因此打一个标记每次下传即可
用线段树合并实现,总复杂度\(O(n\log n)\)
#include<cstdio>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
const int N=300005,mod=998244353;
struct edge
{
int to,nxt;
}e[N]; int n,head[N],a[N],rst[N],cnt,num,x,rt[N],ans;
inline int sum(CI x,CI y)
{
int t=x+y; return t>=mod?t-mod:t;
}
inline int sub(CI x,CI y)
{
int t=x-y; return t<0?t+mod:t;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline void addedge(CI x,CI y)
{
e[++cnt]=(edge){y,head[x]}; head[x]=cnt;
}
class Segment_Tree
{
private:
struct segment
{
int ch[2],val,tag;
}node[N*40]; int tot;
#define lc(x) node[x].ch[0]
#define rc(x) node[x].ch[1]
#define V(x) node[x].val
#define T(x) node[x].tag
#define TN CI l=1,CI r=num
inline void pushdown(CI now)
{
if (T(now)!=1) V(lc(now))=1LL*V(lc(now))*T(now)%mod,V(rc(now))=1LL*V(rc(now))*T(now)%mod,
T(lc(now))=1LL*T(lc(now))*T(now)%mod,T(rc(now))=1LL*T(rc(now))*T(now)%mod,T(now)=1;
}
public:
inline void insert(int& now,CI p,TN)
{
now=++tot; V(now)=T(now)=1; if (l==r) return; int mid=l+r>>1;
if (p<=mid) insert(lc(now),p,l,mid); else insert(rc(now),p,mid+1,r);
}
inline int merge(CI x,CI y,CI p,CI lx=0,CI rx=0,CI ly=0,CI ry=0,TN)
{
if (!x&&!y) return 0; int now=++tot;
if (!y) return pushdown(x),T(now)=sum(1LL*p*ly%mod,1LL*sub(1,p)*ry%mod),
V(now)=1LL*V(x)*T(now)%mod,lc(now)=lc(x),rc(now)=rc(x),now;
if (!x) return pushdown(y),T(now)=sum(1LL*p*lx%mod,1LL*sub(1,p)*rx%mod),
V(now)=1LL*V(y)*T(now)%mod,lc(now)=lc(y),rc(now)=rc(y),now;
int mid=l+r>>1; pushdown(x); pushdown(y); T(now)=1;
lc(now)=merge(lc(x),lc(y),p,lx,sum(rx,V(rc(x))),ly,sum(ry,V(rc(y))),l,mid);
rc(now)=merge(rc(x),rc(y),p,sum(lx,V(lc(x))),rx,sum(ly,V(lc(y))),ry,mid+1,r);
return V(now)=sum(V(lc(now)),V(rc(now))),now;
}
inline int query(CI now,CI p,TN)
{
if (l==r) return V(now); pushdown(now); int mid=l+r>>1;
if (p<=mid) return query(lc(now),p,l,mid); else return query(rc(now),p,mid+1,r);
}
#undef lc
#undef rc
#undef V
#undef T
#undef TN
}SEG;
#define to e[i].to
inline void DFS(CI now=1)
{
if (!head[now]) return SEG.insert(rt[now],lower_bound(rst+1,rst+num+1,a[now])-rst);
for (RI i=head[now];i;i=e[i].nxt) DFS(to),rt[now]=rt[now]?SEG.merge(rt[now],rt[to],a[now]):rt[to];
}
#undef to
int main()
{
RI i; for (scanf("%d",&n),i=1;i<=n;++i) if (scanf("%d",&x),x) addedge(x,i);
for (i=1;i<=n;++i) if (scanf("%d",&a[i]),head[i])
a[i]=1LL*a[i]*quick_pow(10000)%mod; else rst[++num]=a[i];
for (sort(rst+1,rst+num+1),DFS(),i=1;i<=num;++i)
x=SEG.query(rt[1],i),ans=sum(ans,1LL*i*rst[i]%mod*x%mod*x%mod);
return printf("%d",ans),0;
}
Luogu P5298 [PKUWC2018]Minimax的更多相关文章
- BZOJ5461: [PKUWC2018]Minimax
BZOJ5461: [PKUWC2018]Minimax https://lydsy.com/JudgeOnline/problem.php?id=5461 分析: 写出\(dp\)式子:$ f[x] ...
- [LOJ2537] [PKUWC2018] Minimax
题目链接 LOJ:https://loj.ac/problem/2537 洛谷:https://www.luogu.org/problemnew/show/P5298 Solution 不定期诈尸 好 ...
- 题解-PKUWC2018 Minimax
Problem loj2537 Solution pkuwc2018最水的一题,要死要活调了一个多小时(1h59min) 我写这题不是因为它有多好,而是为了保持pkuwc2018的队形,与这题类似的有 ...
- [PKUWC2018] Minimax
Description 给定一棵 \(n\) 个节点的树,每个节点最多有两个子节点. 如果 \(x\) 是叶子,则给定 \(x\) 的权值:否则,它的权值有 \(p_x\) 的概率是它子节点中权值的较 ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并
传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...
- LOJ2537:[PKUWC2018]Minimax——题解
https://loj.ac/problem/2537 参考了本题在网上能找到的为数不多的题解. 以及我眼睛瞎没看到需要离散化,还有不开longlong见祖宗. ——————————————————— ...
- [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...
- 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...
随机推荐
- GPS定位的偏移校正(WGS84与火星坐标互转)
地图坐标系目前包括: 地球坐标 (WGS84) WGS84:World Geodetic System 1984,是为GPS全球定位系统使用而建立的坐标系统. 国际标准,从 GPS 设备中取出的数据的 ...
- Android-再次解读萤石云视频
### 前言 我之前写过一篇萤石云的集成文章,很多人问我有没有demo, 今天我再次总结一下, 并加个些功能. - 集成步骤 - 视频预览播放 - 视频放大缩小 - 视频的质量切换 - 截图 - 视频 ...
- 编译原理之非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵 ...
- Zabbix自定义监控项(模板)
虽然Zabbix提供了很多的模板(简单理解为监控项的集合),在zabbix界面点击share按钮就可以直接跳到模板大全的官方网站,但是由于模板内的监控项数量太多不好梳理且各种模板质量参差不齐,还是建议 ...
- Linux笔记15 使用Apache服务部署静态网站。
配置服务文件参数Linux系统中的配置文件 服务目录 /etc/httpd 主配置文件 /etc/httpd/conf/httpd.conf 网站数据目录 /var/www/html 访问日志 /va ...
- web测试点集合
转自:https://blog.csdn.net/yuki_ying/article/details/54946541 web测试点一 .界面检查 进入一个页面测试,首先是检查title,页面排版,字 ...
- layui多个时间选择器出现闪退问题
1.出现问题的代码 laydate.render({ elem: '#startDate' // }); laydate.render({ elem: '#endDate' // }); laydat ...
- Java的BIO和NIO很难懂?用代码实践给你看,再不懂我转行!
本文原题“从实践角度重新理解BIO和NIO”,原文由Object分享,为了更好的内容表现力,收录时有改动. 1.引言 这段时间自己在看一些Java中BIO和NIO之类的东西,也看了很多博客,发现各种关 ...
- Centos6进入单用户模式的两种方法
单用户模式的作用 在使用Linux系统中,维护人员经常会碰到一个问题,就是在拥有root账号权限和密码的用户中,总是会出现忘记root密码的情况.遇到这种情况,一般情况下,维护人员就会通过最常用的方法 ...
- workerman连接失败方法
workerman链接失败方法 1 防火墙关闭 2 端口开启 3 改成websocket协议