好劲的题目啊,根本没往线段树合并方面去想啊

首先每种权值都有可能出现,因此我们先排个序然后一个一个求概率

由于此时数的值域变成\([1,m]\)(离散以后),我们可以设一个DP:\(f_{x,i}\)表示节点\(x\)的权值为\(i\)的概率

转移的话分\(x\)有几个子节点讨论,若没有或是只有一个都是随便转移的

考虑如果有两个,记为\(lc\)和\(rc\),显然我们可以列出转移方程(此时\(i\)在左儿子中,右儿子同理):

\[f_{x,i}=f_{lc,i}\times(p_x\times \sum_{j=1}^{i-1} f_{rc,j}+(1-p_x)\sum_{j=i+1}^m f_{rc,j})
\]

我们发现这个式子有一些特征:它转移要乘上的是一段前缀和与一段后缀和,这个如果我们用线段树来维护会很好处理

然后由于每个数只会在一棵子树里,换句话说每个数在每个节点的概率只会造成一次的贡献

更妙的是,我们发现一个数造成贡献的时候由于这一段值域区间乘上的数都是一样的,因此打一个标记每次下传即可

用线段树合并实现,总复杂度\(O(n\log n)\)

#include<cstdio>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
const int N=300005,mod=998244353;
struct edge
{
int to,nxt;
}e[N]; int n,head[N],a[N],rst[N],cnt,num,x,rt[N],ans;
inline int sum(CI x,CI y)
{
int t=x+y; return t>=mod?t-mod:t;
}
inline int sub(CI x,CI y)
{
int t=x-y; return t<0?t+mod:t;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline void addedge(CI x,CI y)
{
e[++cnt]=(edge){y,head[x]}; head[x]=cnt;
}
class Segment_Tree
{
private:
struct segment
{
int ch[2],val,tag;
}node[N*40]; int tot;
#define lc(x) node[x].ch[0]
#define rc(x) node[x].ch[1]
#define V(x) node[x].val
#define T(x) node[x].tag
#define TN CI l=1,CI r=num
inline void pushdown(CI now)
{
if (T(now)!=1) V(lc(now))=1LL*V(lc(now))*T(now)%mod,V(rc(now))=1LL*V(rc(now))*T(now)%mod,
T(lc(now))=1LL*T(lc(now))*T(now)%mod,T(rc(now))=1LL*T(rc(now))*T(now)%mod,T(now)=1;
}
public:
inline void insert(int& now,CI p,TN)
{
now=++tot; V(now)=T(now)=1; if (l==r) return; int mid=l+r>>1;
if (p<=mid) insert(lc(now),p,l,mid); else insert(rc(now),p,mid+1,r);
}
inline int merge(CI x,CI y,CI p,CI lx=0,CI rx=0,CI ly=0,CI ry=0,TN)
{
if (!x&&!y) return 0; int now=++tot;
if (!y) return pushdown(x),T(now)=sum(1LL*p*ly%mod,1LL*sub(1,p)*ry%mod),
V(now)=1LL*V(x)*T(now)%mod,lc(now)=lc(x),rc(now)=rc(x),now;
if (!x) return pushdown(y),T(now)=sum(1LL*p*lx%mod,1LL*sub(1,p)*rx%mod),
V(now)=1LL*V(y)*T(now)%mod,lc(now)=lc(y),rc(now)=rc(y),now;
int mid=l+r>>1; pushdown(x); pushdown(y); T(now)=1;
lc(now)=merge(lc(x),lc(y),p,lx,sum(rx,V(rc(x))),ly,sum(ry,V(rc(y))),l,mid);
rc(now)=merge(rc(x),rc(y),p,sum(lx,V(lc(x))),rx,sum(ly,V(lc(y))),ry,mid+1,r);
return V(now)=sum(V(lc(now)),V(rc(now))),now;
}
inline int query(CI now,CI p,TN)
{
if (l==r) return V(now); pushdown(now); int mid=l+r>>1;
if (p<=mid) return query(lc(now),p,l,mid); else return query(rc(now),p,mid+1,r);
}
#undef lc
#undef rc
#undef V
#undef T
#undef TN
}SEG;
#define to e[i].to
inline void DFS(CI now=1)
{
if (!head[now]) return SEG.insert(rt[now],lower_bound(rst+1,rst+num+1,a[now])-rst);
for (RI i=head[now];i;i=e[i].nxt) DFS(to),rt[now]=rt[now]?SEG.merge(rt[now],rt[to],a[now]):rt[to];
}
#undef to
int main()
{
RI i; for (scanf("%d",&n),i=1;i<=n;++i) if (scanf("%d",&x),x) addedge(x,i);
for (i=1;i<=n;++i) if (scanf("%d",&a[i]),head[i])
a[i]=1LL*a[i]*quick_pow(10000)%mod; else rst[++num]=a[i];
for (sort(rst+1,rst+num+1),DFS(),i=1;i<=num;++i)
x=SEG.query(rt[1],i),ans=sum(ans,1LL*i*rst[i]%mod*x%mod*x%mod);
return printf("%d",ans),0;
}

Luogu P5298 [PKUWC2018]Minimax的更多相关文章

  1. BZOJ5461: [PKUWC2018]Minimax

    BZOJ5461: [PKUWC2018]Minimax https://lydsy.com/JudgeOnline/problem.php?id=5461 分析: 写出\(dp\)式子:$ f[x] ...

  2. [LOJ2537] [PKUWC2018] Minimax

    题目链接 LOJ:https://loj.ac/problem/2537 洛谷:https://www.luogu.org/problemnew/show/P5298 Solution 不定期诈尸 好 ...

  3. 题解-PKUWC2018 Minimax

    Problem loj2537 Solution pkuwc2018最水的一题,要死要活调了一个多小时(1h59min) 我写这题不是因为它有多好,而是为了保持pkuwc2018的队形,与这题类似的有 ...

  4. [PKUWC2018] Minimax

    Description 给定一棵 \(n\) 个节点的树,每个节点最多有两个子节点. 如果 \(x\) 是叶子,则给定 \(x\) 的权值:否则,它的权值有 \(p_x\) 的概率是它子节点中权值的较 ...

  5. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  6. LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并

    传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...

  7. LOJ2537:[PKUWC2018]Minimax——题解

    https://loj.ac/problem/2537 参考了本题在网上能找到的为数不多的题解. 以及我眼睛瞎没看到需要离散化,还有不开longlong见祖宗. ——————————————————— ...

  8. [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)

    还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...

  9. 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)

    点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...

随机推荐

  1. ES6- Class类的使用,声明,继承

    声明一个类 //class 类 class Coder{ // 类中都是方法 函数 //val是name方法的参数 name(val){ console.log(val) //类 return val ...

  2. phpstudy漏洞检测

    后门检测脚本 # !/usr/bin/env python # -*- coding:utf-8 -*- import gevent from gevent import monkey gevent. ...

  3. 如何使用 CODING 实践 DevOps 全流程

    你好,欢迎使用 CODING!这份最佳实践将帮助你通过 CODING 研发管理系统来更好地实践 DevOps 流程. DevOps 的本质是打破各个部门之间的隔阂,打通企业的前中后台,推进跨部门协作. ...

  4. 阿里云ubuntu16.04搭建pptpd

    一.搭建pptp vpn 需开放1723端口和gre协议 1.阿里云有个安全组需要开放端口才能访问,需添加新的安全组规则. 登陆阿里云服务器管理控制台,添加安全组规则 入/出方向都填写 端口范围为17 ...

  5. Tyvj 1953 Normal:多项式,点分治

    Decription: 某天WJMZBMR学习了一个神奇的算法:树的点分治! 这个算法的核心是这样的: 消耗时间=0 Solve(树 a) 消耗时间 += a 的 大小 如果 a 中 只有 1 个点, ...

  6. PalletOne调色板跨链的ETH提币实现

    实现区块链的跨链,最主要的诉求就是Token的转移,而Token的跨链转移又分为充币和提币2种操作.以PalletOne调色板来说,如果要把ETH跨链到PalletOne上来流转,就是ETH的充币操作 ...

  7. javascript ES6 新特性之 解构

    解构的作用是可以快速取得数组或对象当中的元素或属性,而无需使用arr[x]或者obj[key]等传统方式进行赋值 var arr = [1, 2, 3]; //传统方式 var a = arr[0], ...

  8. Mac PyCharm2019激活码

    此教程支持最新2019.2版本Pycharm及其他软件 此教程实时更新,请放心使用:如果有新版本出现猪哥都会第一时间尝试激活: pycharm官网下载地址:http://www.jetbrains.c ...

  9. Java题库——Chapter11 继承和多态

    1)Analyze the following code: public class Test { public static void main(String[ ] args) { B b = ne ...

  10. 爬虫爬取m3u8视频文件

    一.m3u8视频格式 一般m3u8文件和 视频流ts文件放在同一目录 而m3u8文件格式存放的一般都是ts 文件的一个列表 二.根据m3u8视频存放以及写法的规律 思路 我们一般网站上能找到的m3u8 ...