AtCoder Grand Contest 036D - Negative Cycle
神仙题?反正我是完全想不到哇QAQ
这场AGC真的很难咧\(\times 10086\)
\(\bf Description\)
一张 \(n\) 个点的图,\(i\) 到 \(i+1\) 有连边。
现在来了个Snuke,他会给所有 \((i,j) ,i \ne j\) 连边,如果 \(i<j\) ,边权为 \(-1\) ,否则为 \(1\) 。
然鹅Ringo不想要图里有负环,所以他会删去Snuke加的一些边,使得图中没有负环,删除一条边有个代价,问最小的删边代价。\(3 \leq n \leq 500\)
\(\bf Solution\)
(官方题解是从 \(0\) 标号的,我是从 \(1\) 标号的,所以有一点点不一样)
对于一个没有负环的图,我们可以弄出这样一个数组 \(p\) 满足
- 对于任意 \(i\) 到 \(j\) 的边,满足 \(p_j \leq p_i + weight(i,j)\),(weight是权值,不是代价)
显然这个 \(p_i\) 是存在的,比如说是 \(1\) 到 \(i\) 的最短路。
然后令 \(q_i=p_i-p_{i+1}\) ,于是
- 对于一条 \(i → j (i>j)\) 的边,必须满足 \(p_j \leq p_i+1\),即 \(q_j+q_{j+1}+ \cdots + q_{i-1} \leq 1\)
- 对于一条 \(i → j (i<j)\) 的边,必须满足 \(p_j \leq p_i-1\),即 \(q_i+q_{i+1}+ \cdots + q_{j-1} \geq 1\)
可以发现只用考虑 \(0 \leq q_i \leq 1\)的情况 。
现在问题就简单了,对于一个 \(q\) ,只要把不符合上述条件的边都删掉就行。
用 \(f[i][j]\) 长度为 \(j\) 的数组里最后一个 \(1\) 在 \(j\) ,倒数第二个在 \(i\) ,的最小删边代价。(和官方题解是反的)
当我们从 \(f[i][j]\) 转移到 \(f[j][k]\) 时,要删去这样两种边:
- \(b → a \ (b>a), i<a \leq j, b>k\) (因为 \(b\) 到 \(a\) 有两个 \(1\) 了所以就不行)
- \(a → b, j<a<b \leq k\) (因为 \(a\) 到 \(b\) 没有 \(1\) 了所以就不行)
用前缀和就可以 \(O(1)\) 转移啦。
时间复杂度 \(O(n^3)\)
具体实现的话,用 \(w[i][j]\) 表示 \(1 \leq a \leq i , j \leq b \leq n\) ,所有 \(b → a\) 边的权值和
\(vv[i][j]\) 表示 \(i \leq a < b \leq j\) ,所有 \(a → b\) 边的权值和。
预处理一下就可以转移了。
另 \(q_0\) 和 \(q_{n+1}\) 强制为 \(1\) 可以省去对边界的特判。
#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=505;
const int p=998244353;
int n;
int a[N][N];
LL w[N][N],vv[N][N];
LL f[N][N];
void read(int &x){ scanf("%d",&x); }
void read(LL &x){ scanf("%lld",&x); }
LL vwv(int a,int b,int c){
return w[b][c]-w[a-1][c];
}
void chkmin(LL &x,LL y){
if (y<x) x=y;
}
int main(){
read(n);
fr(i,1,n)
fr(j,1,n)
if (i!=j) read(a[i][j]);
fr(i,1,n)
rf(j,n,i+1){
w[i][j]=w[i][j+1];
fr(k,1,i) w[i][j]+=a[j][k];
}
fr(i,1,n)
fr(j,i+1,n+1){
vv[i][j]=vv[i][j-1];
fr(k,i,j-1) vv[i][j]+=a[k][j];
}
memset(f,0x3f,sizeof f);
f[0][0]=0;
fr(i,0,n)
fr(j,i,n)
if (f[i][j]<1e18){
fr(k,j+1,n+1)
chkmin(f[j][k],f[i][j]+vv[j+1][k]+vwv(i+1,j,k+1));
}
LL ans=1e18;
fr(i,0,n) chkmin(ans,f[i][n+1]);
cout<<ans<<endl;
return 0;
}
AtCoder Grand Contest 036D - Negative Cycle的更多相关文章
- Atcoder Grand Contest 036 D - Negative Cycle
Atcoder Grand Contest 036 D - Negative Cycle 解题思路 在某些情况下,给一张图加或删一些边要使图合法的题目要考虑到最短路的差分约束系统.这一题看似和最短路没 ...
- AtCoder Grand Contest 002
AtCoder Grand Contest 002 A - Range Product 翻译 告诉你\(a,b\),求\(\prod_{i=a}^b i\)是正数还是负数还是零. 题解 什么鬼玩意. ...
- AtCoder Grand Contest 012
AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...
- AtCoder Grand Contest 011
AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...
- AtCoder Grand Contest 031 简要题解
AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...
- AtCoder Grand Contest 010
AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...
- AtCoder Grand Contest 009
AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...
- AtCoder Grand Contest 008
AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...
- AtCoder Grand Contest 007
AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...
随机推荐
- 【maven的使用】2使用maven与pom文件
一.使用maven:首先需要知道的是,在我们开发人员中有一句话叫做:约定优于配置.比如,如果我们写代码有多种可选方案:硬编码形式:obj.setPath("d:/xxxx") .配 ...
- 2019 中国.NET 开发者峰会正式启动
2014年微软组织并成立.NET基金会,微软在成为主要的开源参与者的道路上又前进了一步.2014年以来已经有众多知名公司加入.NET基金会,Google,微软,AWS三大云厂商已经齐聚.NET基金会, ...
- 通俗易懂spring之singleton和prototype
关于spring bean作用域,基于不同的容器,会有所不同,如BeanFactory和ApplicationContext容器就有所不同,在本篇文章,主要讲解基于ApplicationContext ...
- Mysql高手系列 - 第22篇:深入理解mysql索引原理,连载中
Mysql系列的目标是:通过这个系列从入门到全面掌握一个高级开发所需要的全部技能. 欢迎大家加我微信itsoku一起交流java.算法.数据库相关技术. 这是Mysql系列第22篇. 背景 使用mys ...
- Linux内存描述之内存区域zone–Linux内存管理(三)
服务器体系与共享存储器架构 日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDriver ...
- java的动手动脑10月20日
(1)动手动脑 该函数没有赋初值再就是如果类提供一个自定义的构造方法,将导致系统不在提供默认的构造方法. (2) public class test { /*** @param args*/publi ...
- DG常用运维命令及常见问题解决
DG常见运维命令及常见问题解决方法 l> DG库启动.关闭标准操作Dataguard关闭1).先取消日志应用alter database recover managed standby data ...
- Hydra爆破神器使用
参数详解: -R 根据上一次进度继续破解-S 使用SSL协议连接-s 指定端口-l 指定用户名-L 指定用户名字典(文件)-p 指定密码破解-P 指定密码字典(文件)-e 空密码探测和指定用户密码探测 ...
- 代码审计准备之Thinkphp3
0x01环境部署: 下载: 获取ThinkPHP的方式很多,官方网站(http://thinkphp.cn)是最好的下载和文档获取来源. 官网提供了稳定版本的下载:http://thinkphp.cn ...
- PMBOK(第六版) PMP笔记——《十一》第十一章(项目风险管理)
PMBOK(第六版) PMP笔记——<十一>第十一章(项目风险管理) 第十一章 风险管理: 项目的独特性导致项目充满风险,项目风险是一种不确定的事件或条件,可能发生.将 要发生,也可能不发 ...