今天的模拟赛里T2要使用到数论分块,里面有一个重要的坎就是关于r=sum/(sum/l)的证明,网上关于这道题的题解里都没有关于这个的证明,那么我就来填补一下:

在以下的文章里,我都会使用lo(x)表示对x向下取整,同理up(x)表示对x向上取整;

我们要求左右区间的边界,那么我们就不妨设 取两个数 i 和 i‘ 使得lo(N/i')==lo(N/i)则,我们就可以证明

设 lo(N/i)=k;则有  k*i+p=N   (p一定有  0<=p<i 成立)     设i’=i+d  则有   lo(N/i+d)=k;则有  k*(i+d)+p'=N;

所以 :  p'=N-k*i-k*d   ;

因为  p=N-k*i;

so p'=p-k*d;

because   k*d=N-k*i-p'=p-p'    also because  0<=p<=i

so k*d+p'=p   ->   d(max)=lo(p/k);        (this can make each other !)

because i'=i+d(max)=i+lo(p/k)=i+lo((N%i)/(N/i));

->   i+lo((N-lo(N/i)*i)/lo(N/i));

->lo(i+lo((N-lo(N/i)*i)/lo(N/i)));

->lo((lo(N/i)*i)/lo(N/i)+((N-lo(N/i)*i)/lo(N/i)));

->lo(N/lo(N/i));

证明完毕!!(学校输入法真的难使,我也不想打英文的!)

更加帅气的证明:

设floor(x)表示小于等于x的最大整数,那么若有 floor(N/i)=floor(N/i') ,则i'的最大值为floor(N/floor(N/i));
证明:
我们设 floor(N/i)=k ,显然一定有整数p∈[0,i)满足 k*i+p=N ;
则 p=N-k*i ;
设 d=i-i';
若有整数p'满足 k=floor(N/(i+d)),N=k*(i+d)+p',
那么p'=(N-k*i)-k*d=p-k*d,即 k*d=p'-p;
又∵ p∈[0,i) ∴当d取得最大值dmax时 k*dmax+p'=p,dmax=floor(p/k);
i'=i+dmax
  =i+floor(p/k)
  =i+floor((N%i)/(N/i))
  =i+floor((N-floor(N/i)*i)/floor(N/i))
  =floor(i+floor((N-lo(N/i)*i)/floor(N/i)))
  =floor((floor(N/i)*i)/floor(N/i)+((N-floor(N/i)*i)/floor(N/i)))
  =floor(N/floor(N/i))
即 i'=floor(N/floor(N/i));
得证 。

关于数论分块里r=sum/(sum/l)的证明!的更多相关文章

  1. [CSP-S模拟测试]:123567(莫比乌斯函数+杜教筛+数论分块)

    题目传送门(内部题92) 输入格式 一个整数$n$. 输出格式 一个答案$ans$. 样例 样例输入: 样例输出: 数据范围与提示 对于$20\%$的数据,$n\leqslant 10^6$. 对于$ ...

  2. 查询数组里有多少个数在[L,R]范围中(二分)

    使用两次二分即可得到这个值 比如现在有一个vector<int> vec,里面存放的是有序数列. 我们现在希望找出范围在[L,R]之间的数有多少个. 则有cnt = upper_bound ...

  3. [CQOI2017]小Q的表格(数论+分块)

    题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...

  4. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  5. bzoj 1257 余数之和 —— 数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...

  6. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  7. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  8. 【数论分块】[BZOJ2956、LuoguP2260] 模积和

    十年OI一场空,忘记取模见祖宗 题目: 求$$\sum_{i=1}^{n}\sum_{j=1}^{m} (n \bmod i)(m \bmod i)$$ (其中i,j不相等) 暴力拆式子: $$ANS ...

  9. LUOGU P2261 [CQOI2007]余数求和(数论分块)

    传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...

随机推荐

  1. Road Construction

    King Mercer is the king of ACM kingdom. There are one capital and some cities in his kingdom. Amazin ...

  2. 流水线机制、滑动窗口协议、GBN、SR

    一.滑动窗口协议 为了解决停等操作的性能问题(发了一个分组之后一直等到确认了这个分组才发下一个),推出了流水线机制,提供资源利用率.就是允许发送方在收到对方的ACK前,发送多个分组 其中窗口是一个范围 ...

  3. 你也可以写个服务器 - C# Socket学习2

    前言 这里说的服务器是Web服务器,是类似IIS.Tomcat之类的,用来响应浏览器请求的服务. Socket模拟浏览器的Url Get请求 首先浏览器的请求是HTTP协议.我们上一篇说过,HTTP是 ...

  4. JQ获取元素属性值

    最近在学习JAVA Web,自己也是做个下列表左右选择的小案例. 获取某个元素的属性值一直以为是要调用atrr方法,不过好像获取元素的数组形式再遍历每个元素的时候想获取到它的属性值用attr方法有问题 ...

  5. java架构之路-(Redis专题)SpringBoot连接Redis超简单

    上次我们搭建了Redis的主从架构,哨兵架构以及我们的集群架构,但是我们一直还未投入到实战中去,这次我们用jedis和springboot两种方式来操作一下我们的redis 主从架构 如何配置我上次已 ...

  6. vue 父组件动态传值至子组件

    1.进行数据监听,数据每次变化就初始化一次子组件,进行调取达到传递动态数据的目的普通的监听: watch:{ data: function(newValue,oldValue){ doSomeThin ...

  7. 微信小程序之页面引用utils中的js文件

    /* 只可使用相对路径 */const utils = require('../../../utils/util.js') Page({})

  8. 图像处理笔记(二十一):halcon在图像处理中的运用

    概要: 分水岭算法做图像分割 二维码识别 稍后将其他几篇笔记全都补充上概要方便查询. 分水岭算法做图像分割 使用距离变换结合分水岭算法实现图像分割,可以用来分割仅通过阈值分割还是有边缘连接在一起的情况 ...

  9. java代码实现MD5加密及验证方法

    MD5加密 在我们的程序中,不管是什么,都会有安全问题,今天就说的是MD5加密的方法 MD5是哈希算法,也就是 从明文A到密文B很容易,但是从密文B到明文A几乎不可能 也就是说,给你密文,是几乎无法通 ...

  10. C语言算法动态规划板子题汇总

    本篇博客仅为对动态规划基础问题的状态转移方程进行求解,然后给出对应的注释代码,有关题目的具体内容可在算法导论或网络上进行查看 目录 1.钢管切割(最小值) 2.两条流水线调度 3.多条流水线调度 4. ...