1.介绍

航片里小目标占总像元数不足1%,普通目标检测算法如YOLO会有很多错误,主要原因有3点:

1、航片的无关背景占多数

2、目标大小由于飞行高度和拍摄角度不同

3、航片中的小移动目标和噪音会混淆

2.方法步骤

1、多线索前景分割

  结合了 optical flow 和 background modeling 两个方法,得到小目标概率热图,即一堆感兴趣区域。由于会存在许多噪声,用均值滤波对概率图进行处理。再对这些感兴趣框进行聚类,聚合重叠部分和两个离得很近的框

2、视觉细节增强

  第一步做多分辨率映射,用的是线性插值,将小图片缩放到1,2,3倍,小目标的特定特征就表现出来了。再做前景增强映射,就是把第一步放大的图片重新排列位置到一张空的图上,这个空的图大小同输入网络的图,会有空隙存在,这么做有两个好处,第一是减少没东西的背景,第二是所有放大的图片都一次性进网络,不用每张图再缩放到输入网络的大小。

3、用深度网络监测

  直接用YOLOv2进行目标检测,最后通过坐标回到原始图上。

3.网络训练

  用普通大小的数据训练,然后去监测小目标

个人想法:这篇文章主要工作是在前景分割结合两个方法获得感兴趣区域,然后用线性插值放大感兴趣区域,最后目标检测。亮点可能就是感兴趣区域的获得了,看这篇文章的初衷是想看他怎么处理小目标的,没想到就用了线性插值放大

Visual Detail Augmented Mapping for Small Aerial Target Detection(航片动态小目标检测)的更多相关文章

  1. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  2. 目标检测之vibe---ViBe(Visual Background extractor)背景建模或前景检测

    ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网: ...

  3. 目标检测(二)SSPnet--Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognotion

    作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 以前的CNNs都要求输入图像尺寸固定,这种硬性要求也许会降低识别任意尺寸图像的准确度. ...

  4. Visual Studio 2010生成解决方案时,导致C盘空间越来越小

    为了从根本上解决问题,还是去掉智能跟踪选项吧,方案: VS2010-->工具-->选项-->IntelliTrance-->将“启用IntelliTrace”勾选去掉--> ...

  5. [代码解析]Mask R-CNN介绍与实现(转)

    文章来源 DFann 版权声明:如果你觉得写的还可以,可以考虑打赏一下.转载请联系. https://blog.csdn.net/u011974639/article/details/78483779 ...

  6. paper

    1 IR 小目标检测 “Learning to detect small target A local kernel method” Xie K, Zhou T, Qiao Y, et al. Lea ...

  7. TensorFlow练习13: 制作一个简单的聊天机器人

    现在很多卖货公司都使用聊天机器人充当客服人员,许多科技巨头也纷纷推出各自的聊天助手,如苹果Siri.Google Now.Amazon Alexa.微软小冰等等.前不久有一个视频比较了Google N ...

  8. 从YOLOv1到v3的进化之路

    引言:如今基于深度学习的目标检测已经逐渐成为自动驾驶,视频监控,机械加工,智能机器人等领域的核心技术,而现存的大多数精度高的目标检测算法,速度较慢,无法适应工业界对于目标检测实时性的需求,这时YOLO ...

  9. 第三十节,目标检测算法之Fast R-CNN算法详解

    Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...

随机推荐

  1. Python 3 MySQL数据库操作

    import pymysql class Mysql_db(): def __init__(self,ip,username,password,db_name,table_name): self.ip ...

  2. css3可拖动的魔方3d

    css3可拖动的魔方3d 主要用到知识点: css3 3d转换 原生js鼠标拖动事件 display:grid 布局 实现的功能 3d魔方 可点击,可拖动 直接看效果 html: <div cl ...

  3. 修改redhat7默认显示语言从中文为英文

    [delmore@localhost Desktop]$ su                               //切换到最高权限 Password:                    ...

  4. 【亲测可行,图片宽度高度自适应】c# Graphics MeasureString精确测量字体宽度

    , , ) { int count = number.Length; //需要配置的字段 //Font f = new Font("Microsoft Sans Serif", f ...

  5. adb命令获取app布局文件xml

    adb shell /system/bin/uiautomator dump --compressed /data/local/tmp/uidump.xml adb pull /data/local/ ...

  6. web项目中添加定时任务

    1.在web.xml中添加servlet <servlet> <servlet-name>StatisticInitServlet</servlet-name> & ...

  7. TableCache设置过小造成MyISAM频繁损坏 与 把table_cache适当调小mysql能更快地工作

    来源: 前些天说了一下如何修复损坏的MyISAM表,可惜只会修复并不能脱离被动的境地,只有查明了故障原因才会一劳永逸. 如果数据库服务非正常关闭(比如说进程被杀,服务器断电等等),并且此时恰好正在更新 ...

  8. Mongodb之增删改查操作

    一.创建一个数据库 在我们使用MongoDB数据库时引进了这样一个知识,“对于mongodb,使用了不存在的对象,就等于在创建这个对象”,所以创建数据库的操作就比较简单 在我们使用mysql数据库时u ...

  9. Linux实验:ssh免密码配置

    [实验目的]    1)了解ssh工具的作用    2)熟悉ssh配置过程    3)理解ssh原理[实验原理]    SSH是目前比较可靠的专为远程登录会话和其他网络服务提供安全的协议.不同主机之间 ...

  10. Linux 进程IO杂项

    Linux 进程IO杂项 本文结合一个 pwn 例题,在分析例题的过程中穿插介绍相关知识. 例题来源:PWNABLE.KR 网站,Toddler's Bottle 小节,习题 input. 例题内容: ...