关于递归函数:

  函数内部调用自身的函数。

以n阶乘为例:

  f(n) = n ! = 1 x 2 x 3 x 4 x...x(n-1)x(n) = n x (n-1) !

 def factorial(n):
if n==1:
return 1
return n * f(n-1) //调用过程如下:
>>f(5)
>>5 * f(4)
>>5 * 4 * f(3)
>>5 * 4 * 3 * f(2)
>>5 * 4 * 3 * 2 * f(1)
>>5 * 4 * 3 * 2 * 1
>>120

从上面的例子可以直观得看到递归函数在不断的调用自己的函数,直到n==1(函数出口)。

关于河内塔:

规则:

  1. 三根柱子,A,B, C

  2. A 柱子上的盘子从小到大 排列,最上面的是最小的,最下面的是最大的。

  3. 将A上的盘子移动到C上,移动过程中始终保持,最大的在下面,最小的在上面。

假设 A 柱子上有一个盘子,可以直接从A移动到C完成:

  A --> C

假设 A 柱子上有两个盘子,需要借助B,移动到C:

A --> B

A --> C

B --> C

将A 最上面的盘(2-1)移动到B,然后将A中剩下一块盘移动到C,最后将B中的盘移动到C

假设 A 柱子上有三个盘子,需要借助B移动A 上面的两个盘,然后将A剩下最大的盘移动到C,最后将B中的盘移动到C。

A --> C

A --> B

C --> B  //这三步将A上前两个盘子移动到B

A --> C //这一步将A上最大的盘子移动到C

B --> A

B --> C

A --> C //后面这三步将B上的盘子移动到C

原理是将 A 上的(n-1) 块盘移动到B,然后A中剩下的,也是最大的一块盘移动到C,最后将B上(n-1)块盘移动到C。

def Hanoi(n , a, b, c):
if n==1:
print (" Hanoi Tower move", a, "-->", c)
return
Hanoi(n-1, a, c, b)
Hanoi(1, a, b, c)
Hanoi(n-1, b, a, c) print (" When there is 1 ring on A")
Hanoi(1, 'A', 'B', 'C') print (" When there are 2 rings on A")
Hanoi(2, 'A', 'B', 'C') print (" When there are 3 rings on A")
Hanoi(3, 'A', 'B', 'C') print(" When there are 4 rings on A")
Hanoi(4, 'A', 'B', 'C')

python递归函数和河内塔问题的更多相关文章

  1. python—递归函数

    递归函数 定义:即在函数定义中自己调用自己 递归就是在过程或函数中自我调用 递归必须有递归出口,即递归结束条件 举个栗子-阶乘: def fact(n): if n == 1: return 1 re ...

  2. Python之汉诺塔递归运算

    汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆 ...

  3. 汉诺塔(河内塔)算法 ----C语言递归实现

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子, 在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺 ...

  4. python解决汉诺塔问题

    今天刚刚在博客园安家,不知道写点什么,前两天刚刚学习完python 所以就用python写了一下汉诺塔算法,感觉还行拿出来分享一下 首先看一下描述: from :http://baike.baidu. ...

  5. 【学习】Python解决汉诺塔问题

    参考文章:http://www.cnblogs.com/dmego/p/5965835.html   一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好!   ...

  6. python 实现汉诺塔

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘. 大梵天命令婆罗门把圆盘从下面开始按大小顺 ...

  7. 河内塔(hanoi)

    理论: 河内塔: 1.有三根杆子A,B,C.A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上   讲解: 设A上有n个盘子.如果n=1,则将圆盘从A直接 ...

  8. python实现汉诺塔移动

    汉诺塔问题 汉诺塔是根据一个传说形成的一个问题.汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大 ...

  9. python 游戏 —— 汉诺塔(Hanoita)

    python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...

随机推荐

  1. Kubeasz部署K8s基础测试环境简介

    下面介绍使用Kubeasz部署K8s集群环境. https://github.com/easzlab/kubeasz在需要使用kubeeasz项目安装的k8s时,需要将所有需要它来部署的节点上,都安装 ...

  2. linux 运维基本操作

    本记录来自腾讯云实验  https://cloud.tencent.com/developer/labs/lab/10000 目录操作 任务时间:5min ~ 10min 创建目录 使用 mkdir ...

  3. 重装了服务器,用的是centos/php微信小程序版,centos 命令大全

    centos 命令大全 1.关机 (系统的关机.重启以及登出 ) 的命令 shutdown -h now 关闭系统(1) init 0 关闭系统(2) telinit 0 关闭系统(3) shutdo ...

  4. About me recently

    About me recently Recently I fell that memory has always been problematic.Maybe I hava bee too tired ...

  5. 洛谷P5171 Earthquake

    题面 题解 我们先把样例画出来: 看到它是一个减函数感觉很烦,考虑把函数转过来一下: 转过来的函数通过推导可得为: \[ y = \frac abx + \frac {c \bmod a}b \] 于 ...

  6. Kubernetes中如何让Deployment更新镜像

    问题描述 我的deployment有单个pod,我的自定义docker镜像如下: 123 containers: - name: mycontainer image: myimage:latest 在 ...

  7. 多浏览器书签同步插件EverSync

    有时上网时会遇到浏览器不能正常显示的问题.(比如我的火狐浏览器无法正确显示微信公众号管理后台,在chrome上可以正常显示),所以我的电脑里安装了chrome和firefox两个浏览器.但是时间长了, ...

  8. [Gamma阶段]第八次Scrum Meeting

    Scrum Meeting博客目录 [Gamma阶段]第八次Scrum Meeting 基本信息 名称 时间 地点 时长 第八次Scrum Meeting 19/06/04 大运村寝室6楼 40min ...

  9. [技术博客]利用第三方框架react-native-swipeout实现左右滑动出现按钮

    在之前的开发中,为了实现用户不同手势操作能够对应不同的功能,我们考虑使用React-Native的API--PanResponder,实现识别用户的手势,实现不同的功能.但我们很快就发现,这样简单的实 ...

  10. GPU和显卡是什么关系?GPU会取代CPU吗?

      一.GPU是什么?与显卡是什么关系?安装在什么地方?有单独的GPU板卡吗? GPU就是图像处理芯片,外表与CPU有点相似.显卡的芯片,AMD的一个技术,相当于电脑的处理器CPU,只不过它是显卡的大 ...