There is a new alien language which uses the latin alphabet. However, the order among letters are unknown to you. You receive a list of words from the dictionary, where words are sorted lexicographically by the rules of this new language. Derive the order of letters in this language.

For example,
Given the following words in dictionary,

[
"wrt",
"wrf",
"er",
"ett",
"rftt"
]

The correct order is: "wertf".

Note:

  1. You may assume all letters are in lowercase.
  2. If the order is invalid, return an empty string.
  3. There may be multiple valid order of letters, return any one of them is fine.

给一个单词字典,单词是按照字典序排序,求字母的排序。以题中例子,先看所有单词的第1个字符,可知顺序是w->e-r。然后对于两个连续的单词,找到第一个不相同的字符,比如 wrt和wrf,wr之后t在f之前,所以排序是 t->f。按照当前字母前面出现的字母个数排序,比如w前面有0个字母,e前面有w一个字母,r前面有e和w两个字母,所以排序是w->e->r。因此可以归结为一个拓扑问题,先建图,然后进行遍历。首先统计入度:w的入度是0,e的入度是1,r的入度是2。先把入度为0的节点放入结果中,然后取出w后面连接的节点,将他们的入度-1,如果有入度为0的节点,再放入结果中。

time: 建图->O(n*k), Topological sort-> O(26 + n) = O(n),space: O(n),主要是Map的大小,k表示单词平均长度。

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。拓扑排序通常用来“排序”具有依赖关系的任务。

该序列必须满足下面两个条件:1)每个顶点出现且只出现一次。2)若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。

如何写出它的拓扑排序呢?这里说一种比较常用的方法:

  1. 从 DAG 图中选择一个没有前驱(即入度为0)的顶点并输出。
  2. 从图中删除该顶点和所有以它为起点的有向边。
  3. 重复 1 和 2 直到当前的 DAG 图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。

参考:拓扑排序(Topological Sorting)

Java:

public class Solution {
public String alienOrder(String[] words) { // Topological sorting - Kahn's Algorithm
if(words == null || words.length == 0) {
return "";
}
Map<Character, Set<Character>> graph = new HashMap<>();
Set<Character> set = new HashSet<>();
for (String word : words) {
for (int i = 0; i < word.length(); i++) {
set.add(word.charAt(i));
}
} int[] inDegree = new int[26];
for (int k = 1; k < words.length; k++) {
String preStr = words[k - 1];
String curStr = words[k];
for (int i = 0; i < Math.min(preStr.length(), curStr.length()); i++) {
char preChar = preStr.charAt(i);
char curChar = curStr.charAt(i);
if (preChar != curChar) {
if (!graph.containsKey(preChar)) {
graph.put(preChar, new HashSet<Character>());
}
if (!graph.get(preChar).contains(curChar)) {
inDegree[curChar - 'a']++;
}
graph.get(preChar).add(curChar);
break;
}
}
}
Queue<Character> queue = new LinkedList<>();
for (int i = 0; i < inDegree.length; i++) {
if (inDegree[i] == 0) {
char c = (char)('a' + i);
if (set.contains(c)) {
queue.offer(c);
}
}
}
StringBuilder sb = new StringBuilder();
while (!queue.isEmpty()) {
char c = queue.poll();
sb.append(c);
if (graph.containsKey(c)) {
for (char l : graph.get(c)) {
inDegree[l - 'a']--;
if (inDegree[l - 'a'] == 0) {
queue.offer(l);
}
}
}
}
return sb.length() != set.size() ? "" : sb.toString();
}
}

Python:BFS

class Solution(object):
def alienOrder(self, words):
"""
:type words: List[str]
:rtype: str
"""
result, zero_in_degree_queue, in_degree, out_degree = [], collections.deque(), {}, {}
nodes = sets.Set()
for word in words:
for c in word:
nodes.add(c) for i in xrange(1, len(words)):
if len(words[i-1]) > len(words[i]) and \
words[i-1][:len(words[i])] == words[i]:
return ""
self.findEdges(words[i - 1], words[i], in_degree, out_degree) for node in nodes:
if node not in in_degree:
zero_in_degree_queue.append(node) while zero_in_degree_queue:
precedence = zero_in_degree_queue.popleft()
result.append(precedence) if precedence in out_degree:
for c in out_degree[precedence]:
in_degree[c].discard(precedence)
if not in_degree[c]:
zero_in_degree_queue.append(c) del out_degree[precedence] if out_degree:
return "" return "".join(result) # Construct the graph.
def findEdges(self, word1, word2, in_degree, out_degree):
str_len = min(len(word1), len(word2))
for i in xrange(str_len):
if word1[i] != word2[i]:
if word2[i] not in in_degree:
in_degree[word2[i]] = sets.Set()
if word1[i] not in out_degree:
out_degree[word1[i]] = sets.Set()
in_degree[word2[i]].add(word1[i])
out_degree[word1[i]].add(word2[i])
break  

Python:DFS  

class Solution2(object):
def alienOrder(self, words):
# Find ancestors of each node by DFS.
nodes, ancestors = sets.Set(), {}
for i in xrange(len(words)):
for c in words[i]:
nodes.add(c)
for node in nodes:
ancestors[node] = []
for i in xrange(1, len(words)):
if len(words[i-1]) > len(words[i]) and \
words[i-1][:len(words[i])] == words[i]:
return ""
self.findEdges(words[i - 1], words[i], ancestors) # Output topological order by DFS.
result = []
visited = {}
for node in nodes:
if self.topSortDFS(node, node, ancestors, visited, result):
return "" return "".join(result) # Construct the graph.
def findEdges(self, word1, word2, ancestors):
min_len = min(len(word1), len(word2))
for i in xrange(min_len):
if word1[i] != word2[i]:
ancestors[word2[i]].append(word1[i])
break # Topological sort, return whether there is a cycle.
def topSortDFS(self, root, node, ancestors, visited, result):
if node not in visited:
visited[node] = root
for ancestor in ancestors[node]:
if self.topSortDFS(root, ancestor, ancestors, visited, result):
return True
result.append(node)
elif visited[node] == root:
# Visited from the same root in the DFS path.
# So it is cyclic.
return True
return False

C++:

class Solution {
public:
string alienOrder(vector<string>& words) {
if(words.size() == 0)
return ""; unordered_map<char, vector<char>> d;
unordered_map<char, bool> used; for(auto s : words) {
for(int i = 0; i < s.length(); i++) {
if(used.find(s[i]) == used.end())
used.insert(pair<char, bool>(s[i], false));
}
} for(int i = 1; i < words.size(); i++) {
string cur = words[i];
string pre = words[i - 1];
int j = 0;
while(j < min(cur.length(), pre.length())) {
if(cur[j] != pre[j]) {
if(d.find(pre[j]) == d.end()) {
vector<char> list;
list.push_back(cur[j]);
d.insert(pair<char, vector<char>>(pre[j], list));
}
else {
d[pre[j]].push_back(cur[j]);
}
break;
}
j++;
}
} string result = "";
for(auto it = d.begin(); it != d.end(); it++) {
if(!used[it->first]) {
unordered_set<char> loop;
bool l = topologicalSort(d, used, result, it->first, loop);
if(l)
return "";
}
} for(auto i = used.begin(); i != used.end(); i++) {
if(!i->second)
result = i->first + result;
} return result;
} bool topologicalSort(unordered_map<char, vector<char>> d, unordered_map<char, bool>& used, string& result, char cur, unordered_set<char>& loop) {
used[cur] = true;
loop.insert(cur);
for(auto i : d[cur]) {
if(loop.find(i) != loop.end())
return true;
if(!used[i]) {
bool l = topologicalSort(d, used, result, i, loop);
if(l)
return true;
}
}
result = cur + result;
return false;
}
}; 

   

类似题目:

[LeetCode] 207. Course Schedule 课程安排

[LeetCode] 210. Course Schedule II 课程安排II

All LeetCode Questions List 题目汇总

[LeetCode] 269. Alien Dictionary 外文字典的更多相关文章

  1. [LeetCode] 269. Alien Dictionary 另类字典

    There is a new alien language which uses the latin alphabet. However, the order among letters are un ...

  2. [leetcode]269. Alien Dictionary外星字典

    There is a new alien language which uses the latin alphabet. However, the order among letters are un ...

  3. LeetCode 269. Alien Dictionary

    原题链接在这里:https://leetcode.com/problems/alien-dictionary/ 题目: There is a new alien language which uses ...

  4. 269. Alien Dictionary 另类字典 *HARD*

    There is a new alien language which uses the latin alphabet. However, the order among letters are un ...

  5. [LeetCode] Alien Dictionary 另类字典

    There is a new alien language which uses the latin alphabet. However, the order among letters are un ...

  6. 269. Alien Dictionary火星语字典(拓扑排序)

    [抄题]: There is a new alien language which uses the latin alphabet. However, the order among letters ...

  7. 269. Alien Dictionary

    题目: There is a new alien language which uses the latin alphabet. However, the order among letters ar ...

  8. [Locked] Alien Dictionary

    Alien Dictionary There is a new alien language which uses the latin alphabet. However, the order amo ...

  9. 设计一个 硬件 实现的 Dictionary(字典)

    Dictionary 就是 字典, 是一种可以根据 Key 来 快速 查找 Value 的 数据结构 . 比如 我们在 C# 里用到的 Dictionary<T>, 在 程序设计 里, 字 ...

随机推荐

  1. docker学习5-docker安装tomcat环境和部署war包

    前言 tomcat部署web项目非常方便,把war包放到webapps目录就可以了.本篇使用docker快速搭建一个tomcat环境 下载tomcat镜像 拉取官方最新版tomcat镜像 [root@ ...

  2. LOJ#2343. 「JOI 2016 Final」集邮比赛 2

    题目地址 https://loj.ac/problem/2343 题解 首先处理出\(f[i]\)表示以当前位置开头(J,O,I)的合法方案数.这个显然可以\(O(n)\)处理出来.然后考虑在每个位置 ...

  3. P1972 [SDOI2009]HH的项链[离线+树状数组/主席树/分块/模拟]

    题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的贝壳,因此,他的项链 ...

  4. socket mac终端调试工具 nc netcat

    今天想学点socket ,因此搜索socket 工具,找到了netCat工具.可以打开两个终端window ,实现终端之间的socket的收发信息,为以后学习socket调试做准备用吧.两个终端分别打 ...

  5. Java中的map的遍历方法

    public static void main(String[] args) { Map<String, String> map = new HashMap<String, Stri ...

  6. 埃氏素数筛法(Eratosthenes)

    埃氏筛法: 对于每一个小于n的非负整数p,删去2p,3p,4p......,当处理完所有数后,还没有删除的就是素数. 想法:用a记录素数表,a[i]=1表示不是素数,a[i]=0表示是素数. #inc ...

  7. 洛谷 P3398 仓鼠找sugar 题解

    每日一题 day44 打卡 Analysis 首先有一个结论:先找 p1=(a,b),p2=(c,d) 的LCA的深度,在与(a,c),(a,d),(b,c),(b,d)中最深的LCA n的深度比较, ...

  8. GoCN每日新闻(2019-10-05)

     国庆专辑:GopherChina祝大家国庆节快乐GoCN每日新闻(2019-10-05) 1. Gophercon UK 2019 https://www.bilibili.com/video/av ...

  9. PHP strtok() 函数

    我们仅在第一次调用 strtok() 函数时使用了 string 参数.在首次调用后,该函数仅需要 split 参数,这是因为它清楚自己在当前字符串中所在的位置. 如需分割一个新的字符串,请再次调用带 ...

  10. CF1221F Choose a Square(二维偏序)

    由于y=x,我们可以将点对称过来,以便(x,y)(x<y) 考虑选取正方形(a,a,b,b),点集则为\((a\le x\le y\le b)\),相当于二维数点 将点按x降序,y升序排列,线段 ...