LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.

Rules and restrictions:

  1. You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
  2. The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
  3. You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
  4. For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.

You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.

Example 1:

Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.

Example 2:

Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.

Example 3:

Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.

Note:

  1. N and K are positive integers, which are in the range of [1, 100].
  2. In the matrix flights, all the values are integers in the range of [0, 1].
  3. In the matrix days, all the values are integers in the range [0, 7].
  4. You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
  5. If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
  6. We don't consider the impact of flight hours towards the calculation of vacation days.

flights是n*n矩阵, 表示city之间是否能飞; days[i][j] 是n*k矩阵,表示在city i,week j 这个时间最多能玩几天。初始是在city 0, 问最多能玩几天。注意的是第一周不一定非得在city 0, 可以当天飞到其他city开始。
解法1:DFS, 对每一个当前city,遍历所有它能到达的城市,返回当前week在cur_city能得到的最大值,days[i][week] + dfs(flights, days, i, week+1, data),通过打表data来保存中间值,不然会超时。

解法2:DP, 用dp[i][j]来表示 week i in city j, 最多可以得到多少个vacation。dp[i][j] = max(dp[i - 1][k] + days[j][i]) (k = 0...N - 1, if we can go from city k to city j)

Java: DFS

public class Solution {
int max = 0, N = 0, K = 0; public int maxVacationDays(int[][] flights, int[][] days) {
N = flights.length;
K = days[0].length;
dfs(flights, days, 0, 0, 0); return max;
} //curr: current city
private void dfs(int[][] f, int[][] d, int curr, int week, int sum) {
if (week == K) {
max = Math.max(max, sum);
return;
} for (int dest = 0; dest < N; dest++) {
if (curr == dest || f[curr][dest] == 1) {
dfs(f, d, dest, week + 1, sum + d[dest][week]);
}
}
}
}

Java: DP

public class Solution {
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length;
int K = days[0].length;
int[] dp = new int[N];
Arrays.fill(dp, Integer.MIN_VALUE);
dp[0] = 0; for (int i = 0; i < K; i++) {
int[] temp = new int[N];
Arrays.fill(temp, Integer.MIN_VALUE);
for (int j = 0; j < N; j++) {
for(int k = 0; k < N; k++) {
if (j == k || flights[k][j] == 1) {
temp[j] = Math.max(temp[j], dp[k] + days[j][i]);
}
}
}
dp = temp;
} int max = 0;
for (int v : dp) {
max = Math.max(max, v);
} return max;
}
}

Java: DP  

public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length, K = days[0].length;
int[] dp = new int[N];
for (int i=K-1;i>=0;i--) {
int[] temp = new int[N];
for (int j=0;j<N;j++) {
temp[j] = days[j][i];
int max = dp[j];
for (int n=0;n<N;n++)
if (flights[j][n] == 1) max = Math.max(max, dp[n]);
temp[j] += max;
}
dp = temp;
} int max = dp[0];
for (int i=0;i<N;i++)
if (flights[0][i] == 1) max = Math.max(max, dp[i]);
return max;
}   

Python:

# Time:  O(n^2 * k)
# Space: O(k)
class Solution(object):
def maxVacationDays(self, flights, days):
"""
:type flights: List[List[int]]
:type days: List[List[int]]
:rtype: int
"""
if not days or not flights:
return 0
dp = [[0] * len(days) for _ in xrange(2)]
for week in reversed(xrange(len(days[0]))):
for cur_city in xrange(len(days)):
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week+1) % 2][cur_city]
for dest_city in xrange(len(days)):
if flights[cur_city][dest_city] == 1:
dp[week % 2][cur_city] = max(dp[week % 2][cur_city], \
days[dest_city][week] + dp[(week+1) % 2][dest_city])
return dp[0][0]  

C++:

// Time:  O(n^2 * k)
// Space: O(k)
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
if (days.empty() || flights.empty()) {
return 0;
}
vector<vector<int>> dp(2, vector<int>(days.size()));
for (int week = days[0].size() - 1; week >= 0; --week) {
for (int cur_city = 0; cur_city < days.size(); ++cur_city) {
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week + 1) % 2][cur_city];
for (int dest_city = 0; dest_city < days.size(); ++dest_city) {
if (flights[cur_city][dest_city] == 1) {
dp[week % 2][cur_city] = max(dp[week % 2][cur_city],
days[dest_city][week] + dp[(week + 1) % 2][dest_city]);
}
}
}
}
return dp[0][0];
}
};  

C++:

class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size(), res = 0;
vector<vector<int>> dp(n, vector<int>(k, 0));
for (int j = k - 1; j >= 0; --j) {
for (int i = 0; i < n; ++i) {
dp[i][j] = days[i][j];
for (int p = 0; p < n; ++p) {
if ((i == p || flights[i][p]) && j < k - 1) {
dp[i][j] = max(dp[i][j], dp[p][j + 1] + days[i][j]);
}
if (j == 0 && (i == 0 || flights[0][i])) res = max(res, dp[i][0]);
}
}
}
return res;
}
};

C++:

class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size();
vector<int> dp(n, INT_MIN);
dp[0] = 0;
for (int j = 0; j < k; ++j) {
vector<int> t(n, INT_MIN);
for (int i = 0; i < n; ++i) {
for (int p = 0; p < n; ++p) {
if (i == p || flights[p][i]) {
t[i] = max(t[i], dp[p] + days[i][j]);
}
}
}
dp = t;
}
return *max_element(dp.begin(), dp.end());
}
};

  

  

All LeetCode Questions List 题目汇总

[LeetCode] 568. Maximum Vacation Days 最大化休假日的更多相关文章

  1. [LeetCode] Maximum Vacation Days 最大化休假日

    LeetCode wants to give one of its best employees the option to travel among N cities to collect algo ...

  2. LeetCode 568. Maximum Vacation Days

    原题链接在这里:https://leetcode.com/problems/maximum-vacation-days/ 题目: LeetCode wants to give one of its b ...

  3. 568. Maximum Vacation Days

    Problem statement:  LeetCode wants to give one of its best employees the option to travel among N ci ...

  4. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  5. [LeetCode] 152. Maximum Product Subarray_Medium tag: Dynamic Programming

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  6. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  7. [LeetCode] 325. Maximum Size Subarray Sum Equals k 和等于k的最长子数组

    Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If t ...

  8. [LeetCode] 628. Maximum Product of Three Numbers 三个数字的最大乘积

    Given an integer array, find three numbers whose product is maximum and output the maximum product. ...

  9. [LeetCode] Third Maximum Number 第三大的数

    Given a non-empty array of integers, return the third maximum number in this array. If it does not e ...

随机推荐

  1. [Reprint] Difference Between Job, Work, And Career

    https://www.espressoenglish.net/difference-between-job-work-and-career/ A lot of English learners co ...

  2. janusgraph-mgmt中的一些操作

    关闭事务 mgmt = graph.openManagement(); ids = mgmt.getOpenInstances(); for(String id : ids){if(!id.conta ...

  3. iptables的使用

    四表五链 四表(table):raw.mangle.nat.filter 五链(chain):PREROUTING.INPUT.FORWARD.OUTPUT.POSTROUTING 每个表存在几个或全 ...

  4. [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)

    题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑b​i=1∑k​j ...

  5. LeetCode 919. Complete Binary Tree Inserter

    原题链接在这里:https://leetcode.com/problems/complete-binary-tree-inserter/ 题目: A complete binary tree is a ...

  6. Greenplum 与 PostgreSQL 修改元数据(catalog)的方法 allow_system_table_mods

    背景 PostgreSQL大量的信息保存在元数据中,所有的元数据都是内部维护的,例如建表.建索引.删表等操作,自动维护元数据. 在某些迫不得已的情况下才可能需要直接对元数据进行修改. 默认情况下,用户 ...

  7. 【洛谷P4931】 情侣?给我烧了!(加强版)组合计数

    挺有意思的一道题... code: #include <bits/stdc++.h> using namespace std; #define N 5000006 #define mod ...

  8. 是Mscoreei.dll的正确版本吗?

    在安装.NET 4.0或更高版本之后,您可能会注意到.NET进程有点不寻常.下面是用.NET 2.0编译器编译的简单“Hello World”可执行文件的加载模块的部分列表. 开始-结束模块名称 60 ...

  9. 深入解析pure virtual function call

    在本文中,我们将不解释为什么会提示“纯虚拟函数调用”和如何提示“纯虚拟函数调用”,而是详细解释在win32平台的构造函数/析构函数中直接/间接调用纯虚拟函数时程序本身.在开始时,将显示一个经典示例,在 ...

  10. 开源项目 06 NPOI

    using NPOI.HSSF.UserModel; using NPOI.SS.UserModel; using NPOI.XSSF.UserModel; using System; using S ...