[LeetCode] 568. Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.
Rules and restrictions:
- You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
- The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
- You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
- For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.
You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.
Example 1:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.
Example 2:
Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.
Example 3:
Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.
Note:
- N and K are positive integers, which are in the range of [1, 100].
- In the matrix flights, all the values are integers in the range of [0, 1].
- In the matrix days, all the values are integers in the range [0, 7].
- You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
- If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
- We don't consider the impact of flight hours towards the calculation of vacation days.
flights是n*n矩阵, 表示city之间是否能飞; days[i][j] 是n*k矩阵,表示在city i,week j 这个时间最多能玩几天。初始是在city 0, 问最多能玩几天。注意的是第一周不一定非得在city 0, 可以当天飞到其他city开始。
解法1:DFS, 对每一个当前city,遍历所有它能到达的城市,返回当前week在cur_city能得到的最大值,days[i][week] + dfs(flights, days, i, week+1, data),通过打表data来保存中间值,不然会超时。
解法2:DP, 用dp[i][j]来表示 week i in city j, 最多可以得到多少个vacation。dp[i][j] = max(dp[i - 1][k] + days[j][i]) (k = 0...N - 1, if we can go from city k to city j)
Java: DFS
public class Solution {
int max = 0, N = 0, K = 0; public int maxVacationDays(int[][] flights, int[][] days) {
N = flights.length;
K = days[0].length;
dfs(flights, days, 0, 0, 0); return max;
} //curr: current city
private void dfs(int[][] f, int[][] d, int curr, int week, int sum) {
if (week == K) {
max = Math.max(max, sum);
return;
} for (int dest = 0; dest < N; dest++) {
if (curr == dest || f[curr][dest] == 1) {
dfs(f, d, dest, week + 1, sum + d[dest][week]);
}
}
}
}
Java: DP
public class Solution {
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length;
int K = days[0].length;
int[] dp = new int[N];
Arrays.fill(dp, Integer.MIN_VALUE);
dp[0] = 0; for (int i = 0; i < K; i++) {
int[] temp = new int[N];
Arrays.fill(temp, Integer.MIN_VALUE);
for (int j = 0; j < N; j++) {
for(int k = 0; k < N; k++) {
if (j == k || flights[k][j] == 1) {
temp[j] = Math.max(temp[j], dp[k] + days[j][i]);
}
}
}
dp = temp;
} int max = 0;
for (int v : dp) {
max = Math.max(max, v);
} return max;
}
}
Java: DP
public int maxVacationDays(int[][] flights, int[][] days) {
int N = flights.length, K = days[0].length;
int[] dp = new int[N];
for (int i=K-1;i>=0;i--) {
int[] temp = new int[N];
for (int j=0;j<N;j++) {
temp[j] = days[j][i];
int max = dp[j];
for (int n=0;n<N;n++)
if (flights[j][n] == 1) max = Math.max(max, dp[n]);
temp[j] += max;
}
dp = temp;
} int max = dp[0];
for (int i=0;i<N;i++)
if (flights[0][i] == 1) max = Math.max(max, dp[i]);
return max;
}
Python:
# Time: O(n^2 * k)
# Space: O(k)
class Solution(object):
def maxVacationDays(self, flights, days):
"""
:type flights: List[List[int]]
:type days: List[List[int]]
:rtype: int
"""
if not days or not flights:
return 0
dp = [[0] * len(days) for _ in xrange(2)]
for week in reversed(xrange(len(days[0]))):
for cur_city in xrange(len(days)):
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week+1) % 2][cur_city]
for dest_city in xrange(len(days)):
if flights[cur_city][dest_city] == 1:
dp[week % 2][cur_city] = max(dp[week % 2][cur_city], \
days[dest_city][week] + dp[(week+1) % 2][dest_city])
return dp[0][0]
C++:
// Time: O(n^2 * k)
// Space: O(k)
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
if (days.empty() || flights.empty()) {
return 0;
}
vector<vector<int>> dp(2, vector<int>(days.size()));
for (int week = days[0].size() - 1; week >= 0; --week) {
for (int cur_city = 0; cur_city < days.size(); ++cur_city) {
dp[week % 2][cur_city] = days[cur_city][week] + dp[(week + 1) % 2][cur_city];
for (int dest_city = 0; dest_city < days.size(); ++dest_city) {
if (flights[cur_city][dest_city] == 1) {
dp[week % 2][cur_city] = max(dp[week % 2][cur_city],
days[dest_city][week] + dp[(week + 1) % 2][dest_city]);
}
}
}
}
return dp[0][0];
}
};
C++:
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size(), res = 0;
vector<vector<int>> dp(n, vector<int>(k, 0));
for (int j = k - 1; j >= 0; --j) {
for (int i = 0; i < n; ++i) {
dp[i][j] = days[i][j];
for (int p = 0; p < n; ++p) {
if ((i == p || flights[i][p]) && j < k - 1) {
dp[i][j] = max(dp[i][j], dp[p][j + 1] + days[i][j]);
}
if (j == 0 && (i == 0 || flights[0][i])) res = max(res, dp[i][0]);
}
}
}
return res;
}
};
C++:
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int n = flights.size(), k = days[0].size();
vector<int> dp(n, INT_MIN);
dp[0] = 0;
for (int j = 0; j < k; ++j) {
vector<int> t(n, INT_MIN);
for (int i = 0; i < n; ++i) {
for (int p = 0; p < n; ++p) {
if (i == p || flights[p][i]) {
t[i] = max(t[i], dp[p] + days[i][j]);
}
}
}
dp = t;
}
return *max_element(dp.begin(), dp.end());
}
};
All LeetCode Questions List 题目汇总
[LeetCode] 568. Maximum Vacation Days 最大化休假日的更多相关文章
- [LeetCode] Maximum Vacation Days 最大化休假日
LeetCode wants to give one of its best employees the option to travel among N cities to collect algo ...
- LeetCode 568. Maximum Vacation Days
原题链接在这里:https://leetcode.com/problems/maximum-vacation-days/ 题目: LeetCode wants to give one of its b ...
- 568. Maximum Vacation Days
Problem statement: LeetCode wants to give one of its best employees the option to travel among N ci ...
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- [LeetCode] 152. Maximum Product Subarray_Medium tag: Dynamic Programming
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- [LeetCode] 325. Maximum Size Subarray Sum Equals k 和等于k的最长子数组
Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If t ...
- [LeetCode] 628. Maximum Product of Three Numbers 三个数字的最大乘积
Given an integer array, find three numbers whose product is maximum and output the maximum product. ...
- [LeetCode] Third Maximum Number 第三大的数
Given a non-empty array of integers, return the third maximum number in this array. If it does not e ...
随机推荐
- easyui dialog 设置弹窗位于页面中间
原文链接:https://my.oschina.net/jingyao/blog/776603 此方法为解决页面含有滚动条时,弹窗位置错误问题,此方法可将带滚动条页面中弹窗显示于页面中间. $(&qu ...
- Visual Studio Code 写Python代码
之前用nodepad++,sublime text3,ultraedit,最近上手微软的vsc感觉上手还行,如果没有pycharm照样可以使用它 https://code.visualstudio.c ...
- ARTS-week5
Algorithm 给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组.说明:初始化 nums1 和 nums2 的元素数量分别 ...
- 2019-2020-1 20199301《Linux内核原理与分析》第八周作业
第七章 可执行程序工作原理 ELF概述: 目标平台:它决定了编译器使用的机器命令集. ABI(目标文件) 目标文件和目标平台是二进制兼容的,即该目标文件已经是适应某一种CPU体系结构的二进制指令. E ...
- faster-rcnn系列原理介绍及概念讲解
faster-rcnn系列原理介绍及概念讲解 faster-rcnn系列原理介绍及概念讲解2 转:作者:马塔 链接:https://www.zhihu.com/question/42205480/an ...
- jedis的连接池
1.需要先打开虚拟机,并开启Linux系统的端口号:6379: 其中,第一行代码为修改字符编码格式,解决SSH中文乱码问题. 2.开启redis: 3.利用连接池实现数据的存取: (1)代码实现: i ...
- Linux常用命令合集
常用命令合集 命令选项和参数 Linux中的命令格式为:command [options] [arguments] //中括号表示可选的,即有些命令不需要选项也不需要参数,但有的命令在运行时需要多个 ...
- 处理kubernetes 一些比较难删除的资源
kubernetes 提供了force 的命令在我们删除资源的时候,但是很多时候还是不可以的 一般删除资源的处理 命令 kubectl delete <resource> <reso ...
- 通过三层交换机实现不同VLAN间的通信
主机的IP地址以及子网掩码已列出,下面将讲解如何配置利用三层交换机来实现不同VLAN间的相互通信 SW1的命令: en //进入特权模式 conf t //全局模式 vlan 10 // ...
- THUPC&CTS 2019 游记
day ? 去THU报了个到. day? THUPC比赛日,三个人都没有智商,各种签到题不会做,被各路神仙吊着打.G题还猜了个假结论,做了好久都不对.最后顺利打铁了. 还顺便去看一下THUAC. da ...