AGC028 E - High Elements


有一个排列\(p\),你要分成两个子序列\(A,B\),满足\(A,B\)的LIS长度相等。设\(S\)是一个\(01\)序列,\(S_i=0\)当且仅当\(i\)被分到\(A\)中。求满足条件的字典序最小的\(S\)。

显然算法大约为贪心考虑每一位是否可以是\(0\)。

有一个结论:

\(p\)上升点是\(p\)中lis中的点,上升点是指在这个子序列lis中的点,上升点但不是\(p\)上升点称为新上升点。

  1. 新上升点是上升点是因为它前面的大于它的点都分到了另一个子序列。所以如果将新上升点放到另一个子序列就不是新上升点了

  2. 一定可以做到有一个序列中没有新上升点,如果不满足,考虑\(A,B\)各有一个新上升点,把它们放到另外一个子序列中,就都少了一个上升点,数量还是相等。钦定这个没有新上升点的子序列是\(A\)。

考虑\([i+1,n]\)是否可以盒子安排使得\(A,B\)LIS长度相等。设\([1,i]\)中\(A\)上升点数量为\(la\),\(B\)的为\(lb\),\([i+1,n]\)中有\(k\)个\(p\)上升点。

如果\(k\)个\(p\)上升点\(B\)分了\(pb\)个,\(A\)分了\(k-pb\)个,而且\(B\)中还有\(s\)个新上升点,那么可以根据\(A,B\)上升点相同列式子:

\[la+k-pb=lb+pb+s
\]

\[la+k-lb=2pb+s
\]

左边是常数,设为\(c\)。现在只需要知道能不能在\([i+1,n]\)中选一个上升子序列权值和为\(c\)。\(p\)上升点权值为\(2\),新上升点为\(1\)。

这个直接线段树一下就行了。

#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il ll gi(){
ll x=0,f=1;
char ch=getchar();
while(!isdigit(ch))f^=ch=='-',ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f?x:-x;
}
int n,p[200010];
int f[2][200010],ismx[200010];
struct segtree{
#define mid ((l+r)>>1)
int rt[200010],ls[6000010],rs[6000010],mx[6000010],cnt;
il vd update(int&x,int l,int r,const int&p,const int&d){
++cnt;ls[cnt]=ls[x],rs[cnt]=rs[x],mx[cnt]=mx[x];x=cnt;
if(l==r){mx[x]=d;return;}
if(d>mx[x])mx[x]=d;
if(p<=mid)update(ls[x],l,mid,p,d);
else update(rs[x],mid+1,r,p,d);
}
il int query(int x,int l,int r,const int&L){
if(L<=l)return mx[x];
if(L<=mid)return std::max(query(ls[x],l,mid,L),query(rs[x],mid+1,r,L));
else return query(rs[x],mid+1,r,L);
}
#undef mid
}T0,T1;
char ans1[200010],ans2[200010];
il int Query(int c,int l,int p){
if(l>n)return c?-1e9:0;
if(!c)return T0.query(T0.rt[l],1,n,p);
else return T1.query(T1.rt[l],1,n,p);
}
int main(){
#ifdef XZZSB
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
n=gi();
for(int i=1;i<=n;++i)p[i]=gi();
int la1=0,lb1=0,la2=0,lb2=0,mxa1=0,mxa2=0,mxb1=0,mxb2=0,rest=0;
for(int i=1,mx=0;i<=n;++i)if(p[i]>mx)mx=p[i],ismx[i]=1,++rest;
memset(T1.mx,-63,sizeof T1.mx);
for(int i=n;i;--i){
T0.rt[i]=T0.rt[i+1];T1.rt[i]=T1.rt[i+1];
if(ismx[i])f[0][i]=T0.query(T0.rt[i],1,n,p[i])+2,f[1][i]=T1.query(T1.rt[i],1,n,p[i])+2;
else f[0][i]=T1.query(T1.rt[i],1,n,p[i])+1,f[1][i]=T0.query(T0.rt[i],1,n,p[i])+1;
T0.update(T0.rt[i],1,n,p[i],f[0][i]);T1.update(T1.rt[i],1,n,p[i],f[1][i]);
}
auto adda1=[&](int x){if(x>mxa1)++la1,mxa1=x;};
auto adda2=[&](int x){if(x>mxa2)++la2,mxa2=x;};
auto addb1=[&](int x){if(x>mxb1)++lb1,mxb1=x;};
auto addb2=[&](int x){if(x>mxb2)++lb2,mxb2=x;};
for(int i=1;i<=n;++i){
int c=la1+rest-lb1+(p[i]>mxa1)-ismx[i];
if(c>=0&&Query(c&1,i+1,mxb1)>=c)ans1[i]='0',adda1(p[i]);
else ans1[i]='1',addb1(p[i]);
c=la2+rest-lb2-(p[i]>mxb2)-ismx[i];
if(c>=0&&Query(c&1,i+1,std::max(p[i],mxb2))>=c)ans2[i]='0',addb2(p[i]);
else ans2[i]='1',adda2(p[i]);
if(ismx[i])--rest;
}
if(la1==lb1&&la2==lb2){
if(strcmp(ans1+1,ans2+1)<0)printf("%s",ans1+1);
else printf("%s",ans2+1);
}else if(la1==lb1)printf("%s",ans1+1);
else if(la2==lb2)printf("%s",ans2+1);
else puts("-1");
return 0;
}

AGC028 E - High Elements的更多相关文章

  1. js Form.elements[i]的使用实例

    function pdf(){    //一个html里面可能存在多个form,所以document.form[0]指的是第一个form,document.form[1]返回就是第二个form,如果没 ...

  2. View and Data API Tips: Hide elements in viewer completely

    By Daniel Du With View and Data API, you can hide some elements in viewer by calling "viewer.hi ...

  3. [LeetCode] Minimum Moves to Equal Array Elements II 最少移动次数使数组元素相等之二

    Given a non-empty integer array, find the minimum number of moves required to make all array element ...

  4. [LeetCode] Minimum Moves to Equal Array Elements 最少移动次数使数组元素相等

    Given a non-empty integer array of size n, find the minimum number of moves required to make all arr ...

  5. [LeetCode] Top K Frequent Elements 前K个高频元素

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  6. [LeetCode] Remove Linked List Elements 移除链表元素

    Remove all elements from a linked list of integers that have value val. Example Given: 1 --> 2 -- ...

  7. Chrome 开发工具之Elements

    友情提示:全文图片高能,如使用手机阅读,请确保在wifi情况下或者流量充足.图片有点渣,也算辛苦做出来的,请别嫌弃- Elements面板主要展示当前页面的组织结构,在如今的应用程序中,HTML页面初 ...

  8. T-SQL Recipes之Separating elements

    Separating elements Separating elements is a classic T-SQL challenge. It involves a table called Arr ...

  9. POJ2167Irrelevant Elements[唯一分解定理 组合数 杨辉三角]

    Irrelevant Elements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2407   Accepted: 59 ...

随机推荐

  1. 在PHP中使用UUID扩展的函数

    环境:CentOS Linux release 7.7.1908 (Core)PHP 7.3.11UUID Extention 1.0.4 感觉上PHP对UUID的支持似乎不是很上心,PECL中的UU ...

  2. Spring-AOP切面编程(3)

    https://www.jianshu.com/p/be69b874a2a9 目录 1. Web MVC发展史历程2.Spring概要3.Spring-依赖注入概要(IOC)4.属性注入的三种实现方式 ...

  3. C ProcessAsUser

    class Interop { public static void CreateProcess(string app, string path) { bool result; IntPtr hTok ...

  4. NIO开发Http服务器(5-完结):HttpServer服务器类

    最近学习了Java NIO技术,觉得不能再去写一些Hello World的学习demo了,而且也不想再像学习IO时那样编写一个控制台(或者带界面)聊天室.我们是做WEB开发的,整天围着tomcat.n ...

  5. 爬虫多次爬取时候cookie的存储用于登入

    一.用requests模块自动保存(保存缓存中) 构建一个session对象session = requests.session() 用构建的session代替requests进行访问他就会自动存啦 ...

  6. test aria2 on windows platform

    import 'dart:io'; import 'dart:convert'; import 'package:path/path.dart'; import 'package:web_socket ...

  7. iOS开发,导入c文件引发的Could not build module 'UIKit'问题

    导致出现异常的原因是是因为工程中添加了某(第三方开源库) 一般情况下出现“Unknown type name”是头文件互相引用出现的,这里可以排除,由于源码使用是c\c++与oc混编, 考虑新的XCo ...

  8. Selenium浏览器自动化测试工具

    目录 Selenium浏览器自动化测试工具 Selenium模块在爬虫中的使用 Python简单使用Selenium Selenium的基本操作 Selenium爬取动态加载的数据 Selenium动 ...

  9. JavaWeb 之 JSON

    一.概述 1.概念 JSON:JavaScript Object Notation  JavaScript对象表示法 2.基本格式 var p = {"name":"张三 ...

  10. WAS更新web.xml配置文件不生效的问题

    问题及原因分析: 之前修复漏洞时,写了个过滤器配置在web.xml中,但是部署到服务器并重启后,重新扫描漏洞,还是没有解决对应问题.在确定了这种修复方案是切实可行之后分析,可能是配置的web.xml未 ...