题目大意:有一棵$n$个点的带边权的树,上面有$m$个罪犯,速度为任意大,有一个警察在点$S$,速度为$1$。若警察和罪犯在同一个地方,罪犯就被干掉了,警察希望干掉所有罪犯时间最短,而罪犯希望最大化这个时间。求出这个时间,若无解输出 Terrorists win 。$n,m\leqslant 50$

题解:一定有解,令$f[u][v][x][y]$表示从警察$u$走到$v$,$v$关于$u$的子树内有$x$个罪犯,另外的节点还有$y$个罪犯的最小时间。警察一定选择$dp$值最小的走,而罪犯的分布会使每条边$dp$值得最小值最大。用类似背包的东西转移。在转移时另开一个数组$g[i][j]$表示现在是$v$的第$i$棵子树,放了$j$个罪犯所需的时间。
$$
g[i][j]=\max\{g[i][j],\min\{g[i-1][j-k],dp[v][v'][k][x+y-k]+w\}\}
$$
$v'$为$v$的第$i$棵子树,$k$为$v'$这棵子树放几个罪犯,$w$为$v\to v'$的边权。$g$明显可以用$01$背包的方法把第一维滚掉。到叶子的时候抓住罪犯然后返回。记忆化搜索即可。

卡点:

C++ Code:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
const int maxn = 60, inf = 0x3f3f3f3f; int head[maxn], cnt = 1, deg[maxn];
struct Edge {
int to, nxt, w;
} e[maxn << 1];
inline void addedge(int a, int b, int c) {
e[++cnt] = (Edge) { b, head[a], c }; head[a] = cnt;
e[++cnt] = (Edge) { a, head[b], c }; head[b] = cnt;
++deg[a], ++deg[b];
} int n, m, S, sz[maxn];
int f[maxn << 1][maxn][maxn];
void dfs(int u, int fa = 0) {
for (int i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (v != fa) dfs(v, u), sz[u] += sz[v];
}
}
int dp(int E, int x, int y) {
if (!x && !y) return 0;
int &F = f[E][x][y], u = e[E].to;
if (~F) return F;
if (deg[u] == 1) {
if (y == 0) return 0;
return F = dp(E ^ 1, y, 0) + e[E].w;
}
int g[maxn];
memset(g, 0, sizeof g), g[0] = inf;
for (int i = head[u], v; i; i = e[i].nxt) if (i ^ E ^ 1) {
v = e[i].to;
for (int j = x; j; --j)
for (int k = j; k; --k)
g[j] = std::max(g[j], std::min(g[j - k], dp(i, k, x + y - k) + e[i].w));
}
return F = g[x];
} int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n;
for (int i = 1, a, b, c; i < n; ++i) {
std::cin >> a >> b >> c;
addedge(a, b, c);
}
std::cin >> S >> m;
for (int i = 0, x; i < m; ++i) std::cin >> x, ++sz[x];
dfs(S), memset(f, -1, sizeof f);
int ans = inf;
for (int i = head[S], v; i; i = e[i].nxt) {
v = e[i].to;
ans = std::min(ans, dp(i, sz[v], m - sz[v]) + e[i].w);
}
std::cout << ans << '\n';
return 0;
}

  

[CF868E]Policeman and a Tree的更多相关文章

  1. Codeforces 868E Policeman and a Tree

    题意简述 给你一颗有n个点的树,每条边有边权,有一个警察一开始在点S,他的速度是1,即通过一条长度为x的边要花x单位时间. 有m个罪犯,一开始第i个在点x[i],他们的速度无限快. 如果罪犯和警察到达 ...

  2. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  3. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  4. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  5. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  7. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  8. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

随机推荐

  1. C博客作业02—循环结构

    0.展示PTA总分(0----2) 截图展示2次题目集:单循环和嵌套循环题目集,排名分数截图. 1.本章学习总结(2分) 1.1 学习内容总结 整理这两周学习主要知识点,并能对每个知识点介绍简单案例或 ...

  2. 【AtCoder】 ARC 102

    link C-Triangular Relationship 发现要么全部是\(K\)的倍数,要么全部是模\(K\)余\(K/2,(K=2n)\) #include<bits/stdc++.h& ...

  3. spring 整合 servlet

    目的:记录spring整合 servlet过程demo.(企业实际开发中可能很少用到),融会贯通. 前言:在学习spring 过程(核心 ioc,aop,插一句 学了spring 才对这个有深刻概念, ...

  4. [RoarCTF 2019]simple_uplod

    目录 [RoarCTF 2019]simple_uplod 1.ThinkPHP文件上传 2.upload()多文件上传 ThinkPHP上传文件名暴破 [RoarCTF 2019]simple_up ...

  5. html5 css3 背景视频循环播放代码

    <div style ="position: absolute; z-index: -1; top: 0px; left: 0px; bottom: 0px; right: 0px; ...

  6. IDEA查看接口的实现类

    查找接口的实现类: 快捷键 ctrl + alt +B 再按F2查看详细文档注解 查看类或接口的继承关系: ctrl + h

  7. Shell流程控制语句case

    case语法格式: case 变量或表达式 in 变量或表达式1) 命令1 ;; 变量或表达式2) 命令2 ;; ...... *) 默认命令 esac case语句流程控制图:  实例: [root ...

  8. 深入分析GCC

    深入分析GCC 目录 前言章 GCC概述 11.1 GCC的产生与发展 11.2 GCC的特点 21.3 GCC代码分析 3第2章 GCC源代码分析工具 42.1 vim ctags代码阅读工具 42 ...

  9. 嵌入式LINUX基础教程 第2版

    嵌入式LINUX基础教程  第2版 目录 第1章 入门 11.1 为什么选择Linux 11.2 嵌入式Linux现状 21.3 开源和GPL 21.4 标准及相关组织 31.4.1 Linux标准基 ...

  10. SVN 本地文件锁/服务端文件锁清除步骤

    1.本地文件锁,直接cleanup,cleanup界面选择break locks即可 2.服务端文件锁,本地文件右击没有release lock或者break lock的选项时 方法1:右键,svn选 ...