题目大意:有一棵$n$个点的带边权的树,上面有$m$个罪犯,速度为任意大,有一个警察在点$S$,速度为$1$。若警察和罪犯在同一个地方,罪犯就被干掉了,警察希望干掉所有罪犯时间最短,而罪犯希望最大化这个时间。求出这个时间,若无解输出 Terrorists win 。$n,m\leqslant 50$

题解:一定有解,令$f[u][v][x][y]$表示从警察$u$走到$v$,$v$关于$u$的子树内有$x$个罪犯,另外的节点还有$y$个罪犯的最小时间。警察一定选择$dp$值最小的走,而罪犯的分布会使每条边$dp$值得最小值最大。用类似背包的东西转移。在转移时另开一个数组$g[i][j]$表示现在是$v$的第$i$棵子树,放了$j$个罪犯所需的时间。
$$
g[i][j]=\max\{g[i][j],\min\{g[i-1][j-k],dp[v][v'][k][x+y-k]+w\}\}
$$
$v'$为$v$的第$i$棵子树,$k$为$v'$这棵子树放几个罪犯,$w$为$v\to v'$的边权。$g$明显可以用$01$背包的方法把第一维滚掉。到叶子的时候抓住罪犯然后返回。记忆化搜索即可。

卡点:

C++ Code:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
const int maxn = 60, inf = 0x3f3f3f3f; int head[maxn], cnt = 1, deg[maxn];
struct Edge {
int to, nxt, w;
} e[maxn << 1];
inline void addedge(int a, int b, int c) {
e[++cnt] = (Edge) { b, head[a], c }; head[a] = cnt;
e[++cnt] = (Edge) { a, head[b], c }; head[b] = cnt;
++deg[a], ++deg[b];
} int n, m, S, sz[maxn];
int f[maxn << 1][maxn][maxn];
void dfs(int u, int fa = 0) {
for (int i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (v != fa) dfs(v, u), sz[u] += sz[v];
}
}
int dp(int E, int x, int y) {
if (!x && !y) return 0;
int &F = f[E][x][y], u = e[E].to;
if (~F) return F;
if (deg[u] == 1) {
if (y == 0) return 0;
return F = dp(E ^ 1, y, 0) + e[E].w;
}
int g[maxn];
memset(g, 0, sizeof g), g[0] = inf;
for (int i = head[u], v; i; i = e[i].nxt) if (i ^ E ^ 1) {
v = e[i].to;
for (int j = x; j; --j)
for (int k = j; k; --k)
g[j] = std::max(g[j], std::min(g[j - k], dp(i, k, x + y - k) + e[i].w));
}
return F = g[x];
} int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n;
for (int i = 1, a, b, c; i < n; ++i) {
std::cin >> a >> b >> c;
addedge(a, b, c);
}
std::cin >> S >> m;
for (int i = 0, x; i < m; ++i) std::cin >> x, ++sz[x];
dfs(S), memset(f, -1, sizeof f);
int ans = inf;
for (int i = head[S], v; i; i = e[i].nxt) {
v = e[i].to;
ans = std::min(ans, dp(i, sz[v], m - sz[v]) + e[i].w);
}
std::cout << ans << '\n';
return 0;
}

  

[CF868E]Policeman and a Tree的更多相关文章

  1. Codeforces 868E Policeman and a Tree

    题意简述 给你一颗有n个点的树,每条边有边权,有一个警察一开始在点S,他的速度是1,即通过一条长度为x的边要花x单位时间. 有m个罪犯,一开始第i个在点x[i],他们的速度无限快. 如果罪犯和警察到达 ...

  2. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  3. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  4. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  5. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  7. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  8. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

随机推荐

  1. Java面试集合(三)-30道面试题

    前言 大家好,我是 Vic,今天给大家带来Java面试集合(三)的概述,希望你们喜欢 三 1.在Java中是否可以含有多个类?答:可以含有多个类,但只有一个是public类,public类的类名与文件 ...

  2. Shell的语法

    Shell的语法: 变量:字符串.数字.环境和参数: 条件:shell中的布尔值: 程序控制:if.elif.for.while.until.case: 命令列表: 函数: Shell内置命令: 获取 ...

  3. 【POJ1573】Robot Motion

    题目传送门 本题知识点:模拟 本题的题意也很简单. 给出一个矩阵,矩阵里面有着东南西北(上下左右)的指示,当机器人走到上面时则会按照指示前进.机器人每次都从最上面一行的某一列进入. 需要判断的是机器人 ...

  4. 【牛客】小w的魔术扑克 (并查集?? 树状数组)

    题目描述 小w喜欢打牌,某天小w与dogenya在一起玩扑克牌,这种扑克牌的面值都在1到n,原本扑克牌只有一面,而小w手中的扑克牌是双面的魔术扑克(正反两面均有数字,可以随时进行切换),小w这个人就准 ...

  5. 第10组Alpha冲刺(1/4)

    队名:凹凸曼 组长博客 作业博客 组员实践情况 童景霖 过去两天完成了哪些任务 文字/口头描述 学习Android studio和Java,基本了解APP前端的制作 完善项目APP原型 展示GitHu ...

  6. TCP选项之SO_LINGER

    SO_LINGER这个选项在我以前带队改造haproxy的时候引出过一个reset(RST)客户端连接的bug. SO_LINGER作用设置函数close()关闭TCP连接时的行为.缺省close() ...

  7. MySQL事务隔离级别(一)

    本文实验的测试环境:Windows 10+cmd+MySQL5.6.36+InnoDB 一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做 ...

  8. 函数式接口, Collection等

    Lambda 函数式接口 lambda 表达式的使用需要借助于 函数式接口, 也就是说只有函数式接口才可以将其用 lambda 表达式进行简化. 函数式接口定义为仅含有一个抽象方法的接口. 按照这个定 ...

  9. redis中key和value的存储大小限制

    String类型:一个String类型的value最大可以存储512M List类型:list的元素个数最多为2^32-1个,也就是4294967295个. Set类型:元素个数最多为2^32-1个, ...

  10. osg指定向量旋转指定角度

    向量AB,沿着n旋转10度 osg::Vec3 left = AB*osg::Matrix::rotate(osg::inDegrees(10), n); osg::Vec3 right = AB*o ...