Dynamic_Rankings(动态区间第k大)
ZOJ - 2112
\]
(那些说这道题是树状数组套主席树的人一定对主席树有误解!)
这里我们用树状数组套线段树来解决来写
首先 , 我们需要有n棵线段树(不是\(n^2\)空间,别慌)
我们用这些线段树存储值域$ [l,r] $内数的个数
基于主席树的思想,我们的线段树是要相减的,记录的是前缀
由于要更新前缀,我们必须快速更新,所以采用树状数组来写
事实上,这里线段树的本质并非主席树,而是动态开点的线段树
(这两者是有显著差异的)
这是主席数的单点修改
struct Functional_SegmentTree{
void Add(int p,int pre,int l,int r,int x,int y){
s[p]=s[pre]+y;
if(l==r) return;
int mid=(l+r)>>1;
if(x<=mid) rs[p]=rs[pre],Add(ls[p]=++cnt,ls[pre],l,mid,x,y);
else ls[p]=ls[pre],Add(rs[p]=++cnt,rs[pre],mid+1,r,x,y);
}
};
是路径上的所有点都要新开节点,而实际上动点线段树不是开新点,只是当你的儿子要访问了却还未开出来时才需要开
所以代码应该是这样的
void Add(int p,int l,int r,int x,int y){
s[p]+=y;
if(l==r) return;
int mid=(l+r)>>1;
if(x<=mid) Add(ls[p]?ls[p]:(ls[cnt+1]=rs[cnt+1]=s[cnt+1]=0,ls[p]=++cnt),l,mid,x,y);
else Add(rs[p]?rs[p]:(ls[cnt+1]=rs[cnt+1]=s[cnt+1]=0,rs[p]=++cnt),mid+1,r,x,y);
}
(略有压行)
所以整体上应该是树状数组更新动点线段树
但是由于这题卡空间 (过于罪恶)
所以我们应该先开一个主席树存下原来的值
(为什么这样能省空间呢?因为树状数组更新的空间复杂度是\(log^2(n)\),主席树更新是log(n)的)
于是代码会长这样
const int N=50100,M=10010,K=1520110;
int n,m;
int ncnt;
int a[N],b[N+M],c[M],d[M],e[M];
int cnt;
int ls[K],rs[K],s[K];
int rt[N];
struct hjt{
void Add(int p,int pre,int l,int r,int x,int y){
s[p]=s[pre]+y;
if(l==r) return;
int mid=(l+r)>>1;
if(x<=mid) rs[p]=rs[pre],Add(ls[p]=++cnt,ls[pre],l,mid,x,y);
else ls[p]=ls[pre],Add(rs[p]=++cnt,rs[pre],mid+1,r,x,y);
}
}H;
struct sts{
void Add(int p,int l,int r,int x,int y){
s[p]+=y;
if(l==r) return;
int mid=(l+r)>>1;
if(x<=mid) Add(ls[p]?ls[p]:(ls[cnt+1]=rs[cnt+1]=s[cnt+1]=0,ls[p]=++cnt),l,mid,x,y);
else Add(rs[p]?rs[p]:(ls[cnt+1]=rs[cnt+1]=s[cnt+1]=0,rs[p]=++cnt),mid+1,r,x,y);
}
int T[N];
vector <int> X,Y;
int Que(int l,int r,int k){
if(l==r) return l;
int mid=(l+r)>>1;
int t=0;
rep(i,0,X.size()-1) t+=s[ls[X[i]]];
rep(i,0,Y.size()-1) t-=s[ls[Y[i]]];
if(t>=k) {
rep(i,0,X.size()-1) X[i]=ls[X[i]];
rep(i,0,Y.size()-1) Y[i]=ls[Y[i]];
return Que(l,mid,k);
} else {
rep(i,0,X.size()-1) X[i]=rs[X[i]];
rep(i,0,Y.size()-1) Y[i]=rs[Y[i]];
return Que(mid+1,r,k-t);
}
}
int query(int l,int r,int k){
int p=r; X.clear();X.push_back(rt[r]);
while(p) X.push_back(T[p]),p-=p&-p;
p=l-1;Y.clear();Y.push_back(rt[l-1]);
while(p) Y.push_back(T[p]),p-=p&-p;
return Que(1,ncnt,k);
}
void Upd(int p,int x,int y){
while(p<=n) Add(T[p]?T[p]:(ls[cnt+1]=rs[cnt+1]=s[cnt+1]=0,T[p]=++cnt),1,ncnt,x,y),p+=p&-p;
}
}S;
char opt[N][1];
int main(){
rep(kase,1,rd()){
n=rd(),m=rd();
cnt=0; memset(S.T,0,sizeof S.T);
rep(i,1,n) a[i]=b[i]=rd();
ncnt=n;
rep(i,1,m) {
scanf("%s",opt[i]);
if(opt[i][0]=='Q'){
c[i]=rd(),d[i]=rd(),e[i]=rd();
} else {
c[i]=rd(),d[i]=rd();
b[++ncnt]=d[i];
}
}
sort(b+1,b+ncnt+1);ncnt=unique(b+1,b+ncnt+1)-b-1;
rep(i,1,n) {
a[i]=lower_bound(b+1,b+ncnt+1,a[i])-b;
H.Add(rt[i]=++cnt,rt[i-1],1,ncnt,a[i],1);
}
rep(i,1,m){
if(opt[i][0]=='Q'){
int ans=S.query(c[i],d[i],e[i]);
printf("%d\n",b[ans]);
}else {
d[i]=lower_bound(b+1,b+ncnt+1,d[i])-b;
S.Upd(c[i],a[c[i]],-1);
S.Upd(c[i],a[c[i]]=d[i],1);
}
}
}
}
Dynamic_Rankings(动态区间第k大)的更多相关文章
- ZOJ 1112 Dynamic Rankings【动态区间第K大,整体二分】
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1112 题意: 求动态区间第K大. 分析: 把修改操作看成删除与增加 ...
- hdu5412(动态区间第k大)
CRB and Queries Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- ZOJ 2112 Dynamic Rankings(动态区间第 k 大+块状链表)
题目大意 给定一个数列,编号从 1 到 n,现在有 m 个操作,操作分两类: 1. 修改数列中某个位置的数的值为 val 2. 询问 [L, R] 这个区间中第 k 大的是多少 n<=50,00 ...
- ZOJ2112--Dynamic Rankings (动态区间第k大)
Dynamic Rankings Time Limit: 10 Seconds Memory Limit: 32768 KB The Company Dynamic Rankings has ...
- 整体二分求动态区间第k大
比树状数组套主席树不知道高到哪里去了,solve(l,r,L,R)就是对于L,R的操作区间的答案都在l,r区间里,然后递归下去 复杂度O(nlognlogn),每个操作会执行logn次就是o(nlog ...
- 动态区间第K大
整体二分. 主要需要注意的一点是,对于每个删除操作,若删除操作被算入贡献,则最开始的插入操作也一定会被算入,所以不必担心删除删错. #include<cstdio> #include< ...
- 整体二分(模板二)动态区间第K大
这才是更一般的二分写法--HDU5412 #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include <cstdio>// ...
- 静态区间第k大(主席树)
POJ 2104为例(主席树入门题) 思想: 可持久化线段树,也叫作函数式线段树,也叫主席树(高大上). 可持久化数据结构(Persistent data structure):利用函数式编程的思想使 ...
- 【ZOJ2112】【整体二分+树状数组】带修改区间第k大
The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...
随机推荐
- vue项目打包采坑
1. vue项目打包采坑 1.1. vue运行报错error:Cannot assign to read only property 'exports' of object '#' 这个错误我是在打包 ...
- Javascript/js 的浅拷贝与深拷贝(复制)学习随笔
js变量的数据类型值分基本类型值和引用类型值. 在ES6(ECMAScript6)以前,基本数据类型包括String.Number.Boolean.Undefined.Null. 基本类型值的复制(拷 ...
- Java 7 NIO.2学习(Ing)
Path类 1.Path的基本用法 Path代表文件系统中的位置,即文件的逻辑路径,并不代表物理路径,程序运行的时候JVM会把Path(逻辑路径)对应到运行时的物理位置上. package com.j ...
- 使用ProcDump自动生成Dump文件
ProcDump工具来自Sysinternals Suite 最近用来自动产生Dump文件 一是用来监视服务器程序无响应 procdump -accepteula -64 -ma -h server. ...
- mysql 查询当天数据
查询当天数据 select * from tab where FROM_UNIXTIME(fabutime, '%Y%m%d') = 20121217; mysql TO_DAYS(date) 函 ...
- mysql 外键的基本使用
外键的使用条件: 两个表必须是InnoDB表,MyISAM表暂时不支持外键外键列必须建立了索引,MySQL 4.1.2以后的版本在建立外键时会自动创建索引,但如果在较早的版本则需要显式建立:外键关系的 ...
- 石子合并问题--直线版 HRBUST - 1818
t题目链接:https://vjudge.net/problem/HRBUST-1818 思路:一段已经合并的区间,分成两段区间,遍历所有能分开的区间. 代码有注释,基本就这样一个简单是思路. #in ...
- c语言实现基本的数据结构(四) 循环队列
#include <stdio.h> #include <tchar.h> #include <stdlib.h> #define MaxQueueSize 100 ...
- Pytorch数据读取详解
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler ...
- ovirt磁盘类型(IDE, virtio, virtio-scsi)
ovirt磁盘类型辨析(IDE, virtio, virtio-scsi) 通过一张表格,简单明了的说明这三种硬盘的不同: 整体上来看这三者的最大不同还是挂载磁盘的数量.根据在ovirt的上测试,一台 ...