分布式id的生成方式——雪花算法
雪花算法是twitter开源的一个算法。
由64位0或1组成,其中41位是时间戳,10位工作机器id,12位序列号,该类通过方法nextID()实现id的生成,用Long数据类型去存储。
我们使用idworker不建议每次都通过new的方式使用,如果在Spring中,可以通过如下方式将该bean注入到Spring容器中
<bean id="idWorker" class="utils.IdWorker">
<!-- 工作机器ID:值范围是0-31 数据中心ID:值范围是0-31,两个参数可以不写 -->
<constructor-arg index="0" value="0"></constructor-arg>
<constructor-arg index="1" value="0"></constructor-arg>
</bean>
工具类IdWorker 的完整代码如下
import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface; /**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L; private final long workerId;
// 数据标识id部分
private final long datacenterId; public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence; return nextId;
} private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} /**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
} /**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
} public static void main(String[] args) {
IdWorker idWorker = new IdWorker(0,1);
for (int i = 0; i < 50; i++) {
long nextId = idWorker.nextId();
System.out.println(nextId);
}
}
}
除了使用雪花算法之外还可以采用
redis生成唯一key值、数据库单键一张表生成id、UUID(缺点无序)
分布式id的生成方式——雪花算法的更多相关文章
- 分布式ID生成器 snowflake(雪花)算法
在springboot的启动类中引入 @Bean public IdWorker idWorkker(){ return new IdWorker(1, 1); } 在代码中调用 @Autowired ...
- 分布式id生成器,雪花算法IdWorker
/** * <p>名称:IdWorker.java</p> * <p>描述:分布式自增长ID</p> * <pre> * Twitter的 ...
- 全局唯一iD的生成 雪花算法详解及其他用法
一.介绍 雪花算法的原始版本是scala版,用于生成分布式ID(纯数字,时间顺序),订单编号等. 自增ID:对于数据敏感场景不宜使用,且不适合于分布式场景.GUID:采用无意义字符串,数据量增大时造成 ...
- 分布式ID方案SnowFlake雪花算法分析
1.算法 SnowFlake算法生成的数据组成结构如下: 在java中用long类型标识,共64位(每部分用-分开): 0 - 0000000000 0000000000 0000000000 000 ...
- 雪花算法【分布式ID问题】【刘新宇】
分布式ID 1 方案选择 UUID UUID是通用唯一识别码(Universally Unique Identifier)的缩写,开放软件基金会(OSF)规范定义了包括网卡MAC地址.时间戳.名字空间 ...
- 使用雪花算法为分布式下全局ID、订单号等简单解决方案考虑到时钟回拨
1.snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同 ...
- 分布式ID系列(5)——Twitter的雪法算法Snowflake适合做分布式ID吗
介绍Snowflake算法 SnowFlake算法是国际大公司Twitter的采用的一种生成分布式自增id的策略,这个算法产生的分布式id是足够我们我们中小公司在日常里面的使用了.我也是比较推荐这一种 ...
- 如何设计一个分布式 ID 发号器?
大家好,我是树哥. 在复杂的分布式系统中,往往需要对大量的数据和消息进行唯一标识,例如:分库分表的 ID 主键.分布式追踪的请求 ID 等等.于是,设计「分布式 ID 发号器」就成为了一个非常常见的系 ...
- 雪花算法(snowflake)的JAVA实现
snowflake算法由twitter公司出品,原始版本是scala版,用于生成分布式ID,结构图: 算法描述: 最高位是符号位,始终为0,不可用. 41位的时间序列,精确到毫秒级,41位的长度可以使 ...
随机推荐
- C# 进程 与 线程
C#多线程和线程池1.0.线程的和进程的关系以及优缺点windows系统是一个多线程的操作系统.一个程序至少有一个进程,一个进程至少有一个线程.进程是线程的容器,一个C#客户端程序开始于一个单独的线程 ...
- SQL Server中查找包含某个文本的存储过程 SQL 查找存储过程中出现过的文字怎么查询 查询整个数据库中出现的文本 sql 全局搜索
--将text替换成你要查找的内容SELECT name, *FROM sysobjects o, syscomments sWHERE o.id = s.id AND text LIKE '%tex ...
- 微信小程序中使用全局变量解决页面的传值问题
由于项目需要,最近便在做 一个类似于美团的餐饮平台的的微信微信小程序 ,项目有十几个页面,那么页面间的传值被经常用到.在小程序中页面间的传值主要有使用全局变量和本地存储这两种方法,在这个项目中我采用的 ...
- HTML5中重新定义的 b 和 i 元素
HTML5强调元素的语义,而非表现.b和i元素是早期HTML遗留下来的产物,它们分别用于将文本变为粗体和斜体(那时CSS还未出现). 当时的规范建议编码人员用strong替代b,用em替代i.不过,事 ...
- HTML5深入学习之数据存储
概述 本来,数据存储都是由 cookie 完成的,但是 cookie 不适合大量数据的存储,cookie 速度慢且效率低. 现在,HMLT5提供了两种在客户端存储数据的办法: localStorage ...
- Java梗概
Java平台:J2SE(桌面).J2ME(逐渐被android取代).J2EE(企业级针对web程序) Java是在JVM虚拟机上运行,跨平台本质是在不同平台上运行JVM虚拟机 JRE = JVM+核 ...
- 【干货】gitlab-11.10.4版本汉化
目录 1.YUM安装gitlab-11.10.4 2.gitlab汉化技能 1.YUM安装gitlab-11.10.4 下载gitlab-ce的repo [root@localhost ~]# cur ...
- windows创建虚拟环境
mkvirtualenv --no-site-packages --python=C:\Python36\python.exe MyCrawler
- Linux系统的时间比北京时间慢12个小时的处理方案(将EDT时区改为CST)
今天查看Linux操作系统的时间,发现比正常时间慢12个小时整,感觉很奇怪,后来使用ntp服务器校对时间发现也是不管用的,还是慢12个小时.之前遇到过是慢8个小时,但是我知道是因为使用的是UTC时间, ...
- (十三)Kubernetes Dashboard
Dashboard概述 Github地址 Dashboard是Kubernetes的Web GUI,可用于在Kubernetes集群上部署容器化应用.应用排障.管理集群本身及附加的资源等.常用于集群及 ...