codevs1574广义斐波那契数列
1574 广义斐波那契数列
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出包含一行一个整数,即an除以m的余数。
1 1 1 1 10 7
6
/*
矩阵乘法模板
跟斐波那契差不多
就是初始化难理解
静下心来推推式子,然后明确a1,a2是最后才乘上的就好了
*/
#include<iostream>
#include<cstdio>
#define ll long long using namespace std;
int n,mod,q,p,a1,a2;
struct node
{
ll m[][];
}ans,base; ll init()
{
ll x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return f*x;
} node mul(node a,node b)
{
node tmp;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
tmp.m[i][j]=;
for(int k=;k<;k++)
tmp.m[i][j]=(tmp.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
return tmp;
} void qw(ll n)
{
while(n)
{
if(n&) ans=mul(ans,base);
base=mul(base,base);n>>=;
}
} int main()
{
p=init();q=init();
a1=init();a2=init();
n=init();mod=init();
ans.m[][]=;ans.m[][]=q;
ans.m[][]=;ans.m[][]=p;
base.m[][]=;base.m[][]=q;
base.m[][]=;base.m[][]=p;
n-=;
qw(n); printf("%lld\n",(a1*ans.m[][]%mod+a2*ans.m[][]%mod)%mod);
return ;
}
数列第10项是55,除以7的余数为6。
codevs1574广义斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- HDU 5451 广义斐波那契数列
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- 通过docker-composer启动容器nginx,并完成spring.boot的web站点端口转发
前面已经讲过2篇基于docker的mysql.redis容器编排并启动.这次将练习下nginx的docker方式的部署,以及通过nginx去代理宿主主机上的Web服务应该怎么配 PS:(这里由于ngi ...
- session--保持登录20分钟,常用与用户登录状态
思路:request 与 session 两个作对比 1. . . 2. 3.
- 39页第7题 计算2的i次方之和
/*计算2的i次方之和*/ #include<stdio.h> #include<math.h>/*调用math.h文件中的函数*/ int main(void) { int ...
- saltstack(五) saltstack的state状态管理
一,YAML语法 首先先了解一下YAML,默认的SLS文件的renderer是YAML renderer.YAML是一个有很多强大特性的标记性语言.Salt使用了一个YAML的小型子集,映射非常常用的 ...
- web项目的创建
1) 创建Mave的webapp项目 2) 在Pom文件中添加servlet-api的依赖 <dependency> <groupId>javax.servlet</gr ...
- 【11】AngularJS HTML DOM
AngularJS HTML DOM AngularJS 为 HTML DOM 元素的属性提供了绑定应用数据的指令. ng-disabled 指令 ng-disabled 指令直接绑定应用程序数据到 ...
- Java基础学习总结(77)——Java枚举再总结
在Java SE5之前,我们要使用枚举类型时,通常会使用static final 定义一组int常量来标识,代码如下 public static final int MAN = 0; public s ...
- [luoguP1631] 序列合并(堆 || 优先队列)
传送门 首先,把A和B两个序列分别从小到大排序,变成两个有序队列.这样,从A和B中各任取一个数相加得到N2个和,可以把这些和看成形成了n个有序表/队列: A[1]+B[1] <= A[1]+B[ ...
- PHP htmlentities 和 htmlspecialchars的区别
一直对这两个转换htm字符为html实体的函数混淆不清,查询了一下文档,总结如下 htmlentities: Convert all applicable characters to HTML ent ...