codevs1574广义斐波那契数列
1574 广义斐波那契数列
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出包含一行一个整数,即an除以m的余数。
1 1 1 1 10 7
6
/*
矩阵乘法模板
跟斐波那契差不多
就是初始化难理解
静下心来推推式子,然后明确a1,a2是最后才乘上的就好了
*/
#include<iostream>
#include<cstdio>
#define ll long long using namespace std;
int n,mod,q,p,a1,a2;
struct node
{
ll m[][];
}ans,base; ll init()
{
ll x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return f*x;
} node mul(node a,node b)
{
node tmp;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
tmp.m[i][j]=;
for(int k=;k<;k++)
tmp.m[i][j]=(tmp.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
return tmp;
} void qw(ll n)
{
while(n)
{
if(n&) ans=mul(ans,base);
base=mul(base,base);n>>=;
}
} int main()
{
p=init();q=init();
a1=init();a2=init();
n=init();mod=init();
ans.m[][]=;ans.m[][]=q;
ans.m[][]=;ans.m[][]=p;
base.m[][]=;base.m[][]=q;
base.m[][]=;base.m[][]=p;
n-=;
qw(n); printf("%lld\n",(a1*ans.m[][]%mod+a2*ans.m[][]%mod)%mod);
return ;
}
数列第10项是55,除以7的余数为6。
codevs1574广义斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如 ...
- HDU 5451 广义斐波那契数列
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- 最高的奖励 - 优先队列&贪心 / 并查集
题目地址:http://www.51cpc.com/web/problem.php?id=1587 Summarize: 优先队列&贪心: 1. 按价值最高排序,价值相同则按完成时间越晚为先: ...
- <MyBatis>入门二 全局配置文件
<?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE configuration PUBLIC ...
- db2构建临时结果集
一 values ('1',2,3) 为一行 ‘1’ 2 3 行数据类型可以不同 values ('1',2,3),('f',5,6) 为两行 (values 1,2,3 ...
- python爬虫26 | 把数据爬取下来之后就存储到你的MySQL数据库。
小帅b说过 在这几篇中会着重说说将爬取下来的数据进行存储 上次我们说了一种 csv 的存储方式 这次主要来说说怎么将爬取下来的数据保存到 MySQL 数据库 接下来就是 学习python的正确姿势 真 ...
- SQL学习笔记:库和表的创建
目录 创建和删除数据库 创建和删除表 添加.修改和删除字段 创建和删除数据库 CREATE DATABASE justForLearn; DROP DATABASE justForLearn; 创建和 ...
- 线程 synchronized锁机制
脏读 一个常见的概念.在多线程中,难免会出现在多个线程中对同一个对象的实例变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数据其实是被更改过 ...
- 51. spring boot属性文件之多环境配置【从零开始学Spring Boot】
原本这个章节是要介绍<log4j多环境不同日志级别的控制的>但是没有这篇文章做基础的话,学习起来还是有点难度的,所以我们先一起了解下spring boot属性文件之多环境配置,当然文章中也 ...
- mysql 5.5与5.6 timestamp 字段 DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP的区别
http://www.111cn.net/database/mysql/55392.htm 本文章来给各位同学介绍关于mysql 5.5与5.6 timestamp 字段 DEFAULT CURREN ...
- [luoguP1351] 联合权值(Dfs)
传送门 距离为2的点会产生权值,第一问,只需要在dfs的时候把一个点相邻的点都处理出来就行. 具体处理方式看代码,然而这样只处理了一遍,最后在乘2就好了. 第二问只需要处理一个点相邻的点中最大的和次大 ...
- PHP htmlentities 和 htmlspecialchars的区别
一直对这两个转换htm字符为html实体的函数混淆不清,查询了一下文档,总结如下 htmlentities: Convert all applicable characters to HTML ent ...