题目链接:http://poj.org/problem?id=2976

Dropping tests
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13615   Accepted: 4780

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

 
 
 
题解:
 
 
 
 
代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e3+; int a[MAXN], b[MAXN];
double d[MAXN];
int n, k; bool test(double L)
{
for(int i = ; i<=n; i++)
d[i] = 1.0*a[i] - L*b[i];
sort(d+, d++n);
double sum = ;
for(int i = k+; i<=n; i++) //舍弃前k小的数
sum += d[i];
return sum>=;
} int main()
{
while(scanf("%d%d", &n, &k) && (n||k))
{
for(int i = ; i<=n; i++)
scanf("%d", &a[i]);
for(int i = ; i<=n; i++)
scanf("%d", &b[i]); double l = , r = 1.0;
while(l+EPS<=r)
{
double mid = (l+r)/;
if(test(mid))
l = mid + EPS;
else
r = mid - EPS;
}
printf("%.0f\n", r*);
}
}
 

POJ2976 Dropping tests —— 01分数规划 二分法的更多相关文章

  1. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  2. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  3. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  4. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  5. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  6. POJ 2976 Dropping tests 01分数规划

    给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...

  7. $POJ$2976 $Dropping\ tests$ 01分数规划+贪心

    正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...

  8. POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))

    题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...

  9. 【POJ2976】Dropping tests - 01分数规划

    Description In a certain course, you take n tests. If you get ai out of bi questions correct on test ...

随机推荐

  1. 【译】NCCloud: Applying Network Coding for the Storage Repair in a Cloud-of-Clouds

    NCCloud:多云存储设备下存储修复的网络编码 Yuchong Hu, Henry C. H. Chen, Patrick P. C. Lee, Yang Tang  摘要:近年来的研究提出通过条带 ...

  2. cf711E ZS and The Birthday Paradox

    ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that g ...

  3. linux的crontab定时任务命令

    linux的crontab定时任务命令 cron是一个linux下的定时执行工具. 启动.停止.重启.重新载入配置/sbin/service crond start|stop|restart|relo ...

  4. scott登陆PLSQL时候出现insufficient privileges的解决方法

    先用SYS登陆SQLPLUS,即: 再给scott授权:

  5. Linux下的搜索命令grep(转)

    一.简介 grep(global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具, ...

  6. Linux查看系统状态命令top

    用法 top 自动刷新系统状态,要结束使用[Ctrl]+[C] 效果图: 信息解释(转自百度经验http://jingyan.baidu.com/article/4d58d5412917cb9dd4e ...

  7. 前端微服务-面向web平台级应用的设计

    从去年开始,前端领域就出现了一个‘微应用’的名词,说的是前端架构的一种设计思路,业内都把它和后端的微服务进行类比,当时忙于公司的项目.没有静下心来好好了解,现在项目结束,再加上最近看的几篇关于前端微服 ...

  8. Java8 本地DateTime API

    原文:http://www.yiibai.com/java8/java8_localdateapi.html 使用Java8,新的日期时间API引入覆盖旧的日期时间API的以下缺点. 非线程安全 - ...

  9. 使用SourceTree 来管理 Gitcafe 的Pages 发布Blog!

    有个好爹的 SourceTree 是来自 JIRA 的娘家 Bitbucket 的新东家 ATLASSIAN.com 一家成功的,对敏捷软件工程拥有全栈式支持的商业公司, 所推出的 MAC 专用, S ...

  10. Go -- 交叉编译

    编译Windows程序和mac程序