题目大意:意思就是让求A(A是矩阵)+A2+A3+A4+A5+A6+······+AK,其中矩阵范围n<=40,k<=1000000。

解题思路:由于k的取值范围很大,所以很自然地想到了二分法,用递归逐步将k二分(公式:A+A2+A3+A4+A5+A= A+A2+A+ A3(A+A2+A3)),

  这种方法只需要注意k是奇数的情况就可以了。

  最坑的是第二种方法,根据矩阵的性质可以构造出来一个子矩阵,假如有矩阵B=|A  E| ,那么B=|AK   E+ A+A2+A3+A4+A5+A6+······+AK|

|0  E|                |0          E                                         |

  呵呵········,这种方法wa了好多次,我曾经开始怀疑线性代数老师是不是讲错了。最后在T巨的提醒下发现 然后还有结束标志,还有每个实例后面都有一个换行。

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn = ;
int n;
struct mat
{
int p[maxn][maxn];
};
mat mul (mat a, mat b)
{
int i, j, k, m;
m = n * ;
mat c;
memset (c.p, , sizeof(c.p));
for (i=; i<m; i++)
for (j=; j<m; j++)
{
for (k=; k<m; k++)
c.p[i][j] += a.p[i][k] * b.p[k][j];
c.p[i][j] = c.p[i][j] % ;
}
return c;
} mat pow (int n, mat a, mat b)
{
while (n)
{
if (n % )
{
b = mul (b, a);
}
n /= ;
a = mul (a, a);
}
return b;
} int main ()
{
int k;
while (scanf ("%d %d", &n, &k))
{
if (!n)
break;
mat a, b;
memset (b.p, , sizeof(b.p));
memset (a.p, , sizeof(a.p)); for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
scanf ("%d", &a.p[i][j]);
a.p[i][j] = a.p[i][j] % ;
} for (int i=; i<n; i++)//构造矩阵,使a矩阵的右上,右下成为单位矩阵,把b也初始化为单位矩阵
a.p[i][i+n] = a.p[i+n][i+n] = b.p[i][i] = b.p[i+n][i+n] = ; b = pow (k+, a, b);
for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
if (i == j)//在b右上角的那个矩阵减去一个单位矩阵
{
b.p[i][j+n] --;
if (b.p[i][j+n] < )//防止出现末尾是零,减去单位矩阵是-1的情况。
b.p[i][j+n] = ;
}
if (j == n-)
printf ("%d\n", b.p[i][j+n]);
else
printf ("%d ", b.p[i][j+n]);
}
printf ("\n");
}
return ;
}

UVA 11149 Power of Matrix 构造矩阵的更多相关文章

  1. UVA - 11149 Power of Matrix(矩阵倍增)

    题意:已知N*N的矩阵A,输出矩阵A + A2 + A3 + . . . + Ak,每个元素只输出最后一个数字. 分析: A + A2 + A3 + . . . + An可整理为下式, 从而可以用lo ...

  2. UVA 11149 - Power of Matrix(矩阵乘法)

    UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...

  3. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  4. UVa 11149 Power of Matrix(倍增法、矩阵快速幂)

    题目链接: 传送门 Power of Matrix Time Limit: 3000MS      Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...

  5. UVA 11149 Power of Matrix 快速幂

    题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory ...

  6. UVa 11149 Power of Matrix 矩阵快速幂

    题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...

  7. UVA 11149 Power of Matrix

    矩阵快速幂. 读入A矩阵之后,马上对A矩阵每一个元素%10,否则会WA..... #include<cstdio> #include<cstring> #include< ...

  8. UVA 11149.Power of Matrix-矩阵快速幂倍增

    Power of Matrix UVA - 11149       代码: #include <cstdio> #include <cstring> #include < ...

  9. hdu 5015 233 Matrix(构造矩阵)

    http://acm.hdu.edu.cn/showproblem.php?pid=5015 由于是个二维的递推式,当时没有想到能够这样构造矩阵.从列上看,当前这一列都是由前一列递推得到.依据这一点来 ...

随机推荐

  1. 偏差-方差分解Bias-Variance Decomposition

    转自: http://www.cnblogs.com/jmp0xf/archive/2013/05/14/Bias-Variance_Decomposition.html

  2. webpack-Module Resolution(模块解析)

    模块解析(Module Resolution) resolver 是一个库(library),用于帮助找到模块的绝对路径.一个模块可以作为另一个模块的依赖模块,然后被后者引用,如下: import f ...

  3. [转] 买彩票的利器--gun

    源链接 还在自己买彩票吗,有个现成的:GNU shuf命令. shuf -i - -n | 这样就会产生两组彩票(1~36个数字任选) 当然还可以派其他用途,比如: shuf -e clubs hea ...

  4. Redis管理各类型存储数据命令

    >>>字符串 1 SET key value 设置指定 key 的值 2 GET key 获取指定 key 的值. 3 GETRANGE key start end 返回 key 中 ...

  5. android真机调试 INSTALL_FAILED_MEDIA_UNAVAILABLE 问题解决方案

    前提是手机用数据线连到电脑,安装好手机对应的驱动. 1:打开cmd 2:cd切换到sdk安装目录的platform-tools目录,比如我安装到了D盘根目录,则输入: cd d:\android-sd ...

  6. 【iOS系列】-UITableViewCell的展开与收缩的实现思路

    UITableViewCell的展开与收缩的实现思路 现在项目中很多地方都会用到,所以我这里介绍一种可以复用的思路,这与文章后面的Swift的实现思路不同,具体大家可自行对比. Demo项目地址 开始 ...

  7. 【iOS系列】-UINavigationController的使用(Segue传递数据)

    [iOS系列]-UINavigationController的使用 UINavigationController是以以栈(先进后出)的形式保存子控制器, 常用属性: UINavigationItem有 ...

  8. Oracle可插拔数据库的jdbc连接串写法

    我在服务器上部署某个第三方系统的数据库的时候,服务器数据库版本为oracle 12c.我采用的方式是新建了一个实例.访问正常. 后来项目的负责人告诉我,oracle12C支持所谓的可插拔数据库.可插拔 ...

  9. EJB3.0

    由于EJB2.0的复杂性,在Spring和Hibernate[1]  等轻量级框架出现后,大量的用户转向应用轻量级框架.在大家的呼声中, EJB 期待已久的EJB3.0规范终于发布了.在本文中将对新的 ...

  10. CollectionView缩放水平卡片布局

    实现效果 实现思路 从Demo效果图中,可以看出来,主要是缩放系数的计算.对于不同距离的cell,其缩放系数要变化,以便整体协调显示. 所以,我们必须重写-layoutAttributesForEle ...