[Usaco2012 Open]Balanced Cow Subsets
Description
Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.
给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。
Input
Line 1: The integer N.
Lines 2..1+N: Line i+1 contains M(i).
Output
Line 1: The number of balanced subsets of cows.
Sample Input
4 1 2 3 4
Sample Output
3
直接搜复杂度\(O(3^n)\),显然不行,考虑折半搜索,分成两部分,这样复杂度变为\(O(2*3^{n/2})\),然后对两部分进行查找即可,细节见代码
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=20,M=6e4;
struct S1{
int val,sta;
void insert(int v,int s){val=v,sta=s;}
}A[M+10],B[M+10];
int v[N+10],cntA,cntB,n;
bool vis[(1<<N)+10];
bool cmp1(const S1 &x,const S1 &y){return x.val<y.val;}
bool cmp2(const S1 &x,const S1 &y){return x.val>y.val;}
void dfs(int x,int limit,int sta,int sum){
if (x>limit){
limit==n>>1?A[++cntA].insert(sum,sta):B[++cntB].insert(sum,sta);
return;
}
dfs(x+1,limit,sta,sum);
dfs(x+1,limit,sta|(1<<(x-1)),sum+v[x]);
dfs(x+1,limit,sta|(1<<(x-1)),sum-v[x]);
}
int main(){
n=read();
for (int i=1;i<=n;i++) v[i]=read();
dfs(1,n>>1,0,0),dfs((n>>1)+1,n,0,0);
sort(A+1,A+1+cntA,cmp1);
sort(B+1,B+1+cntB,cmp2);
int i=1,j=1,Ans=0;
while (i<=cntA&&j<=cntB){
while (j<=cntB&&-B[j].val<A[i].val) j++;
int tmp=j;
while (A[i].val+B[j].val==0){
if (!vis[A[i].sta|B[j].sta]) vis[A[i].sta|B[j].sta]=1,Ans++;
j++;
}
j=tmp,i++;
}
printf("%d\n",Ans-1);
}
[Usaco2012 Open]Balanced Cow Subsets的更多相关文章
- BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
- bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)
2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 462 Solv ...
- 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469
题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...
- BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets
考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...
- bzoj2679:[Usaco2012 Open]Balanced Cow Subsets
思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...
- 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets
[算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...
- BZOJ.2679.Balanced Cow Subsets(meet in the middle)
BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...
- SPOJ-SUBSET Balanced Cow Subsets
嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...
随机推荐
- Spring的AOP AspectJ切入点语法详解(转)
一.Spring AOP支持的AspectJ切入点指示符 切入点指示符用来指示切入点表达式目的,在Spring AOP中目前只有执行方法这一个连接点,Spring AOP支持的AspectJ切入点指示 ...
- 如何用grep命令同时显示“匹配行”上下的n行?
如何用grep命令同时显示匹配行上下的n行 标准unix/linux下的grep通过以下参数控制上下文 grep -C 5 foo file 显示file文件中匹配foo字串那行以及上下5行gre ...
- USACO castle
<pre name="code" class="cpp"><pre>USER: Kevin Samuel [kevin_s1] TASK ...
- 抓包工具Fiddler使用宝典之捕获手机报文
Fiddler 是通过代理来实现数据捕获的.对 Android 手机来说,也是通过将网络连接的代理指向 PC 机的 Fiddler port.来实现数据包的拦截. 以下,我以我的一次实践为例,向大家介 ...
- GCC编译动态和静态链接库例子
我们通常把一些公用函数制作成函数库,供其它程序使用.函数库分为静态库和动态库两种.静态库在程序编译时会被连接到目标代码中,程序运行时将不再需要该静态库.动态库在程序编译时并不会被连接到目标代码中,而是 ...
- 故障案例:磁盘空间不足可能引起的mysql问题
此前在工作中.由于客户的磁盘空间报警没怎么注意.空间不足引起了下面可能发生的mysql问题 1 mysql进程起不来 2 mysql无法正常关闭,必须kill -9 3 mysql能 ...
- android WIFI信息获取
在androi中WIFI信息的获取能够通过系统提供的WIFI Service获取 [java] WifiManager wifi_service = (WifiManager)getSystemSe ...
- Wiz笔记发布博客工具无法获取分类修复
使用Wiz笔记可以很方便的将笔记发布到博客,而且支持markdwon书写,并且可以很方便的通过复制粘贴来插入图片. 用法:http://blog.wiz.cn/wiz-plugin-blog-writ ...
- Vue框架之组件系统
1,Vue组件系统之全局组件 1.1Vue全局组件的在实例化调用Vue的模板中导入组件的名称 <!DOCTYPE html> <html lang="zh-cn" ...
- 5.eclipse 自带的jdk没有源码,改了它
其实JDK源码在安装的时候已经放在了jdk所在的目录下,只是eclipse使用 了不带有源码的jre,导致没找到对应的源码,点击 Window->Perference->Java-> ...