Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

Line 1: The integer N.

Lines 2..1+N: Line i+1 contains M(i).

Output

Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4

Sample Output

3


直接搜复杂度\(O(3^n)\),显然不行,考虑折半搜索,分成两部分,这样复杂度变为\(O(2*3^{n/2})\),然后对两部分进行查找即可,细节见代码

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=20,M=6e4;
struct S1{
int val,sta;
void insert(int v,int s){val=v,sta=s;}
}A[M+10],B[M+10];
int v[N+10],cntA,cntB,n;
bool vis[(1<<N)+10];
bool cmp1(const S1 &x,const S1 &y){return x.val<y.val;}
bool cmp2(const S1 &x,const S1 &y){return x.val>y.val;}
void dfs(int x,int limit,int sta,int sum){
if (x>limit){
limit==n>>1?A[++cntA].insert(sum,sta):B[++cntB].insert(sum,sta);
return;
}
dfs(x+1,limit,sta,sum);
dfs(x+1,limit,sta|(1<<(x-1)),sum+v[x]);
dfs(x+1,limit,sta|(1<<(x-1)),sum-v[x]);
}
int main(){
n=read();
for (int i=1;i<=n;i++) v[i]=read();
dfs(1,n>>1,0,0),dfs((n>>1)+1,n,0,0);
sort(A+1,A+1+cntA,cmp1);
sort(B+1,B+1+cntB,cmp2);
int i=1,j=1,Ans=0;
while (i<=cntA&&j<=cntB){
while (j<=cntB&&-B[j].val<A[i].val) j++;
int tmp=j;
while (A[i].val+B[j].val==0){
if (!vis[A[i].sta|B[j].sta]) vis[A[i].sta|B[j].sta]=1,Ans++;
j++;
}
j=tmp,i++;
}
printf("%d\n",Ans-1);
}

[Usaco2012 Open]Balanced Cow Subsets的更多相关文章

  1. BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

    BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...

  2. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  3. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

  4. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  5. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  6. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

  9. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

随机推荐

  1. Meteor环境安装配置

    在本教程中,我们将展示如何在windows操作系统安装Meteor .在我们开始学习使用Meteor 之前,我们将需要NodeJS.如果你还没有安装它,则可以点击下表中的链接. 必须条件 Meteor ...

  2. Visual Studio VS如何修改代码字体

    工具-选项-环境-字体和颜色

  3. Input系统—ANR原理分析(转)

    一. 概述 当input事件处理得慢就会触发ANR,那ANR内部原理是什么,哪些场景会产生ANR呢. “工欲善其事必先利其器”,为了理解input ANR原理,前面几篇文章疏通了整个input框架的处 ...

  4. soapUI系列之—-05 JDBC Request & Xpath Match

    一.配置JDBC Connection String 1. 以Oracle为例,要使用JDBC数据库就要先下一个 oracle JDBC的驱动,下载成功后把它放到soapUI安装目录下的  bin/e ...

  5. 2012年公司组织旅游西安线个人记录(repost)

    2012年公司组织旅游西安线个人记录 文件夹 [隐藏]  1 序言 2 第1天 3 第2天 4 第3天 5 第4天 6 第5天 [title=2012%E5%B9%B4%E5%85%AC%E5%8F% ...

  6. 嵌入式开发之davinci--- 8148/8168/8127 中的图像处理vpss link dei、sclr、swms、Mosaic’s

    vpss 中的link (1)dei dei 主要做数据交错处理,带缩放 dei control data flow: (2)sclr 8168中支持缩放按比例的分子和分母,只支持缩小,貌似不支持放大 ...

  7. ASP.NET for WebApi

    WebApi,听说过吧?呵呵. 感觉比WebService,WCF要强.尤其是那个啥WCF,啥鬼东西,真难懂.真难搞.真难用. 说比WebService要强,是因为不用在本地先生成个代理.而且XML也 ...

  8. 百度Fex webuploader.js上传大文件失败

    项目上用百度webuploader.js上传文件,option选项里面已经设置单个文件大小,但是上传低于此阈值的文件时仍然不成功. 我现在的理解是,框架是将文件post到后台服务器端的.. 百度发现是 ...

  9. ABAP ALV F4帮助

    ALV F4帮助, 选值保存到ALV. TYPE-POOLS:slis. CLASS lcl_event_receiver DEFINITION DEFERRED. DATA: gt_fcat TYP ...

  10. Lightoj 1009 - Back to Underworld

    1009 - Back to Underworld    PDF (English) Statistics Forum Time Limit: 4 second(s) Memory Limit: 32 ...