Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

Line 1: The integer N.

Lines 2..1+N: Line i+1 contains M(i).

Output

Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4

Sample Output

3


直接搜复杂度\(O(3^n)\),显然不行,考虑折半搜索,分成两部分,这样复杂度变为\(O(2*3^{n/2})\),然后对两部分进行查找即可,细节见代码

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=20,M=6e4;
struct S1{
int val,sta;
void insert(int v,int s){val=v,sta=s;}
}A[M+10],B[M+10];
int v[N+10],cntA,cntB,n;
bool vis[(1<<N)+10];
bool cmp1(const S1 &x,const S1 &y){return x.val<y.val;}
bool cmp2(const S1 &x,const S1 &y){return x.val>y.val;}
void dfs(int x,int limit,int sta,int sum){
if (x>limit){
limit==n>>1?A[++cntA].insert(sum,sta):B[++cntB].insert(sum,sta);
return;
}
dfs(x+1,limit,sta,sum);
dfs(x+1,limit,sta|(1<<(x-1)),sum+v[x]);
dfs(x+1,limit,sta|(1<<(x-1)),sum-v[x]);
}
int main(){
n=read();
for (int i=1;i<=n;i++) v[i]=read();
dfs(1,n>>1,0,0),dfs((n>>1)+1,n,0,0);
sort(A+1,A+1+cntA,cmp1);
sort(B+1,B+1+cntB,cmp2);
int i=1,j=1,Ans=0;
while (i<=cntA&&j<=cntB){
while (j<=cntB&&-B[j].val<A[i].val) j++;
int tmp=j;
while (A[i].val+B[j].val==0){
if (!vis[A[i].sta|B[j].sta]) vis[A[i].sta|B[j].sta]=1,Ans++;
j++;
}
j=tmp,i++;
}
printf("%d\n",Ans-1);
}

[Usaco2012 Open]Balanced Cow Subsets的更多相关文章

  1. BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

    BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...

  2. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  3. bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)

    2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 462  Solv ...

  4. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  5. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  6. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

  9. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

随机推荐

  1. Go -- 多个go文件包名都是main

    用go run *.go 或 go run one.go two.go main.go

  2. 【网络】TCP协议

    一.概述 主要特点: 1)面向连接的运输层协议 2)每一条TCP连接只能有两个端点,每一条TCP连接只能是点对点的(一对一) 3)TCP提供可靠交付的服务 4)TCP提供全双工通信 5)面向字节流:T ...

  3. 转: java DES的算法片码

    转自: https://www.zhihu.com/question/36767829 作者:郭无心链接:https://www.zhihu.com/question/36767829/answer/ ...

  4. Android开发——本地验证码的简易实现

    0.  前言   验证码无处不在.有人问我,你知道达芬奇password以下是什么吗,对.答案就是达芬奇验证码. 验证码一个最基本的作用就是防止恶意暴力破解登录,防止不间断的登录尝试,事实上能够在se ...

  5. Linux环境搭建:1. 安装VMware

    我家淘宝店,主要协助同学做毕业设计:https://shop104550034.taobao.com/?spm=2013.1.1000126.d21.pPCzDZ 1. 下载VMware 能够到我的3 ...

  6. HLJU 1220: AC100天 (枚举)

    1220: AC100天 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 89  Solved: 12 [id=1220">Submit ...

  7. C++常用的函数,好的博客文章整理,集锦

    http://www.cnblogs.com/xianghang123/archive/2011/08/24/2152404.html    c语言产生随机数的方法 http://blog.sina. ...

  8. Response.ContentLength获取文件大小

    Response.ContentLength返回的是请求内容的大小,而不是请求文件的大小,当我们用Http断点续传的时候,比如文件大小为100M,第一次下载的时候ContentLength的大小就是1 ...

  9. css3动画应用-音乐唱片旋转播放特效

    css3动画应用-音乐唱片旋转播放特效 核心点: 1.设置图片为圆形居中,使图片一直不停旋转. 2.文字标题(潘玮柏--反转地球)一直从左到右不停循环移动. 3.点击图标,音乐暂停,图片停止旋转:点击 ...

  10. RFC 在OA中创建PR

    创建PR:BAPI_REQUISITION_CREATE BAPI_PR_CREATE                 "Create Enjoy Purchase Requisistion ...