Element-wise operations
Element-wise operations
An element-wise operation operates on corresponding elements between tensors.
Two tensors must have the same shape in order to perform element-wise operations on them.
Suppose we have the following two tensors(Both of these tensors are rank-2 tensors with a shape of 2 \(\times\) 2):
t1 = torch.tensor([
[1, 2],
[3, 4]
], dtype=torch.float32)
t2 = torch.tensor([
[9, 8],
[7, 6]
], dtype=torch.float32)
The elements of the first axis are arrays and the elements of the second axis are numbers.
# Example of the first axis
> print(t1[0])
tensor([1., 2.])
# Example of the second axis
> print(t1[0][0])
tensor(1.)
Addition is an element-wise operation.
> t1 + t2
tensor([[10., 10.],
[10., 10.]])
In fact, all the arithmetic operations, add, subtract, multiply, and divide are element-wise operations. There are two ways we can do this:
- Using these symbolic operations:
> t + 2
tensor([[3., 4.],
[5., 6.]])
> t - 2
tensor([[-1., 0.],
[1., 2.]])
> t * 2
tensor([[2., 4.],
[6., 8.]])
> t / 2
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
- Or equivalently, these built-in tensor methods:
> t.add(2)
tensor([[3., 4.],
[5., 6.]])
> t.sub(2)
tensor([[-1., 0.],
[1., 2.]])
> t.mul(2)
tensor([[2., 4.],
[6., 8.]])
> t.div(2)
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
Broadcasting tensors
Broadcasting is the concept whose implementation allows us to add scalars to higher dimensional tensors.
We can see what the broadcasted scalar value looks like using the broadcast_to()Numpy function:
> np.broadcast_to(2, t.shape)
array([[2, 2],
[2, 2]])
//This means the scalar value is transformed into a rank-2 tensor just like t, and //just like that, the shapes match and the element-wise rule of having the same //shape is back in play.
Trickier example of broadcasting
t1 = torch.tensor([
[1, 1],
[1, 1]
], dtype=torch.float32)
t2 = torch.tensor([2, 4], dtype=torch.float32)
Even through these two tensors have differing shapes, the element-wise operation is possible, and broadcasting is what makes the operation possible.
> np.broadcast_to(t2.numpy(), t1.shape)
array([[2., 4.],
[2., 4.]], dtype=float32)
>t1 + t2
tensor([[3., 5.],
[3., 5.]])
When do we actually use broadcasting? We often need to use broadcasting when we are preprocessing our data, and especially during normalization routines.
Comparison operations are element-wise. For a given comparison operation between tensors, a new tensor of the same shape is returned with each element containing either a 0 or a 1.
> t = torch.tensor([
[0, 5, 0],
[6, 0, 7],
[0, 8, 0]
], dtype=torch.float32)
Let's check out some of the comparison operations.
> t.eq(0)
tensor([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=torch.uint8)
> t.ge(0)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8)
> t.gt(0)
tensor([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]], dtype=torch.uint8)
> t.lt(0)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]], dtype=torch.uint8)
> t.le(7)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 0, 1]], dtype=torch.uint8)
Element-wise operations using functions
Here are some examples:
> t.abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])
> t.sqrt()
tensor([[0.0000, 2.2361, 0.0000],
[2.4495, 0.0000, 2.6458],
[0.0000, 2.8284, 0.0000]])
> t.neg()
tensor([[-0., -5., -0.],
[-6., -0., -7.],
[-0., -8., -0.]])
> t.neg().abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])
Element-wise operations的更多相关文章
- 向量的一种特殊乘法 element wise multiplication
向量的一种特殊乘法 element wise multiplication 物体反射颜色的计算采用这样的模型: vec3 reflectionColor = objColor * lightColor ...
- [C2P1] Andrew Ng - Machine Learning
About this Course Machine learning is the science of getting computers to act without being explicit ...
- TensorRT 3:更快的TensorFlow推理和Volta支持
TensorRT 3:更快的TensorFlow推理和Volta支持 TensorRT 3: Faster TensorFlow Inference and Volta Support 英伟达Tens ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- Must Know Tips/Tricks in Deep Neural Networks
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially C ...
- [Tensorflow] Cookbook - Neural Network
In this chapter, we'll cover the following recipes: Implementing Operational Gates Working with Gate ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
随机推荐
- loj6157 A^B Problem (并查集)
题目: https://loj.ac/problem/6157 分析: 这种树上异或,一般是采用分位考虑,但是这题即使分位,也会发现非常不好处理 这里考虑维护一个点到其根的路径的异或值 用并查集去检测 ...
- BCD工具类(8421)
目录 1.BCD介绍 (1)BCD码(Binary-Coded Decimal)亦称二进码十进数.用4位二进制数来表示1位十进制数中的0~9这10个数码.用二进制编码的十进制代码. (2)BCD码可分 ...
- iOS macOS的后渗透利用工具:EggShell
EggShell是一款基于Python编写的iOS和macOS的后渗透利用工具.它有点类似于metasploit,我们可以用它来创建payload建立侦听.此外,在反弹回的session会话也为我们提 ...
- GAN Generative Adversarial Network 生成式对抗网络-相关内容
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...
- 【effective c++】模板与泛型编程
模板元编程:在c++编译器内执行并于编译完成时停止执行 1.了解隐式接口和编译期多态 面向对象编程总是以显式接口(由函数名称.参数类型和返回类型构成)和运行期多态(虚函数)解决问题 模板及泛型编程:对 ...
- UVALive3211- Now or later(二分+2-SAT)
题目链接 题意:有n架飞机.每架飞机都能够选择早着陆和晚着陆两种方式之中的一个,且必须选择一种. 任务就是安排全部飞机着陆时.相邻两个着陆时间间隔的最小值尽量大. 思路:用二分处理最小值尽量大.该题目 ...
- poj1904 二分图匹配+强连通分量
http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...
- Binder系列8—如何使用Binder(转)
一.Native层Binder 源码结构: ClientDemo.cpp: 客户端程序 ServerDemo.cpp:服务端程序 IMyService.h:自定义的MyService服务的头文件 IM ...
- Selenium系列之--04 常见元素操作总结
一.Selenium总共有八种定位方法 By.id() 通过id定位 By.name() 通过name 定位 By.xpath() 通过xpath定位 By.className() 通过clas ...
- ASP.NET MVC 学习笔记-2.Razor语法 ASP.NET MVC 学习笔记-1.ASP.NET MVC 基础 反射的具体应用 策略模式的具体应用 责任链模式的具体应用 ServiceStack.Redis订阅发布服务的调用 C#读取XML文件的基类实现
ASP.NET MVC 学习笔记-2.Razor语法 1. 表达式 表达式必须跟在“@”符号之后, 2. 代码块 代码块必须位于“@{}”中,并且每行代码必须以“: ...