Element-wise operations
Element-wise operations
An element-wise operation operates on corresponding elements between tensors.
Two tensors must have the same shape in order to perform element-wise operations on them.
Suppose we have the following two tensors(Both of these tensors are rank-2 tensors with a shape of 2 \(\times\) 2):
t1 = torch.tensor([
[1, 2],
[3, 4]
], dtype=torch.float32)
t2 = torch.tensor([
[9, 8],
[7, 6]
], dtype=torch.float32)
The elements of the first axis are arrays and the elements of the second axis are numbers.
# Example of the first axis
> print(t1[0])
tensor([1., 2.])
# Example of the second axis
> print(t1[0][0])
tensor(1.)
Addition is an element-wise operation.
> t1 + t2
tensor([[10., 10.],
[10., 10.]])
In fact, all the arithmetic operations, add, subtract, multiply, and divide are element-wise operations. There are two ways we can do this:
- Using these symbolic operations:
> t + 2
tensor([[3., 4.],
[5., 6.]])
> t - 2
tensor([[-1., 0.],
[1., 2.]])
> t * 2
tensor([[2., 4.],
[6., 8.]])
> t / 2
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
- Or equivalently, these built-in tensor methods:
> t.add(2)
tensor([[3., 4.],
[5., 6.]])
> t.sub(2)
tensor([[-1., 0.],
[1., 2.]])
> t.mul(2)
tensor([[2., 4.],
[6., 8.]])
> t.div(2)
tensor([[0.5000, 1.0000],
[1.5000, 2.0000]])
Broadcasting tensors
Broadcasting is the concept whose implementation allows us to add scalars to higher dimensional tensors.
We can see what the broadcasted scalar value looks like using the broadcast_to()Numpy function:
> np.broadcast_to(2, t.shape)
array([[2, 2],
[2, 2]])
//This means the scalar value is transformed into a rank-2 tensor just like t, and //just like that, the shapes match and the element-wise rule of having the same //shape is back in play.
Trickier example of broadcasting
t1 = torch.tensor([
[1, 1],
[1, 1]
], dtype=torch.float32)
t2 = torch.tensor([2, 4], dtype=torch.float32)
Even through these two tensors have differing shapes, the element-wise operation is possible, and broadcasting is what makes the operation possible.
> np.broadcast_to(t2.numpy(), t1.shape)
array([[2., 4.],
[2., 4.]], dtype=float32)
>t1 + t2
tensor([[3., 5.],
[3., 5.]])
When do we actually use broadcasting? We often need to use broadcasting when we are preprocessing our data, and especially during normalization routines.
Comparison operations are element-wise. For a given comparison operation between tensors, a new tensor of the same shape is returned with each element containing either a 0 or a 1.
> t = torch.tensor([
[0, 5, 0],
[6, 0, 7],
[0, 8, 0]
], dtype=torch.float32)
Let's check out some of the comparison operations.
> t.eq(0)
tensor([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=torch.uint8)
> t.ge(0)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8)
> t.gt(0)
tensor([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]], dtype=torch.uint8)
> t.lt(0)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]], dtype=torch.uint8)
> t.le(7)
tensor([[1, 1, 1],
[1, 1, 1],
[1, 0, 1]], dtype=torch.uint8)
Element-wise operations using functions
Here are some examples:
> t.abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])
> t.sqrt()
tensor([[0.0000, 2.2361, 0.0000],
[2.4495, 0.0000, 2.6458],
[0.0000, 2.8284, 0.0000]])
> t.neg()
tensor([[-0., -5., -0.],
[-6., -0., -7.],
[-0., -8., -0.]])
> t.neg().abs()
tensor([[0., 5., 0.],
[6., 0., 7.],
[0., 8., 0.]])
Element-wise operations的更多相关文章
- 向量的一种特殊乘法 element wise multiplication
向量的一种特殊乘法 element wise multiplication 物体反射颜色的计算采用这样的模型: vec3 reflectionColor = objColor * lightColor ...
- [C2P1] Andrew Ng - Machine Learning
About this Course Machine learning is the science of getting computers to act without being explicit ...
- TensorRT 3:更快的TensorFlow推理和Volta支持
TensorRT 3:更快的TensorFlow推理和Volta支持 TensorRT 3: Faster TensorFlow Inference and Volta Support 英伟达Tens ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- Must Know Tips/Tricks in Deep Neural Networks
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially C ...
- [Tensorflow] Cookbook - Neural Network
In this chapter, we'll cover the following recipes: Implementing Operational Gates Working with Gate ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
随机推荐
- java的异常与记录日志
今天在<java编程思想>一书中看到了异常与记录日志,发现学会将异常记录进日志中还是很有必要的,以下是书中的例子: import java.io.PrintWriter; import j ...
- Caused by: java.lang.IncompatibleClassChangeError: class org.springframework.scheduling.quartz.CronTriggerBean has interface org.quartz.CronTrigger as super class
这是版本的问题: 解决办法有两种: 1.降低Quartz版本,降到1.X去. 2.升级Spring版本到3.1+,根据Spring的建议,将原来的**TriggerBean替换成**TriggerFa ...
- vmware下centos6.7网络配置
使用NAT方式: 查看/etc/sysconfig/network-script/ 下面没有ifcfg-eth0 新建ifcfg-eth0,内容如下 DEVICE=eth0 BOOTPROTO=dhc ...
- Centos5.11 //IP/phpmyadmin 远程无法登入
异地登入phpmyadmin时,会出现"You don't have permission to access /phpmyadmin/ on this server."这是因为配 ...
- [Javascript] Link to Other Objects through the JavaScript Prototype Chain
Objects have the ability to use data and methods that other objects contain, as long as it lives on ...
- Linux VPS/server上用Crontab来实现VPS自己主动化
VPS或者server上常常会须要VPS或者server上常常会须要定时备份数据.定时运行重新启动某个服务或定时运行某个程序等等,一般在Linux使用Crontab,Windows以下是用计划任务(W ...
- PADs 元器件PCB建库
直接看图就好了,上图! 有几点需要记住的: 如果没有datasheet的情况下,与焊盘相比,阻焊大0.1mm,钢网小0.1mm.或者阻焊大0.05mm,钢网等大,具体要看引脚的间距. 焊盘太大,比如1 ...
- 多媒体开发之---h.264 rtsp网络流测试流
rtsp://218.204.223.237:554/live/1/66251FC11353191F/e7ooqwcfbqjoo80j.sdp 珠海拱北
- 什么是cookie?session和cookie的区别?
1.cookie数据存放在客户的浏览器上,session数据放在服务器上. 2.cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE欺骗 考虑到安全应当使用session ...
- md5 js
js-md5 - npm https://www.npmjs.com/package/js-md5 var rotateLeft = function(lValue, iShiftBits) { re ...