题目链接:

  Hdu 3488 Tour

题目描述:

  有n个节点,m条有权单向路,要求用一个或者多个环覆盖所有的节点。每个节点只能出现在一个环中,每个环中至少有两个节点。问最小边权花费为多少?

解题思路:

  因为每个节点就出现一个,那么每个节点出度和入度都为1咯。我们可以对每个节点u拆点为u,u',分别放在集合X,Y.然后对两个集合进行完备匹配。完备匹配成功以后,每个节点就会有只有一个出度,一个入度的。

用KM求最小匹配的话,先初始化maps为-INF,然后把各边权值存为负,求出最大值取反即可。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f;
int maps[maxn][maxn], used[maxn], s[maxn], n;
int lx[maxn], ly[maxn];
bool visx[maxn], visy[maxn];
bool Find (int x)
{
visx[x] = ;
for (int i=; i<=n; i++)
{
if (!visy[i] && lx[x]+ly[i]==maps[x][i])
{
visy[i] = ;
if (!used[i] || Find(used[i]))
{
used[i] = x;
return true;
}
}
else
s[i] = min (s[i], lx[x] + ly[i] - maps[x][i]);
}
return false;
}
int KM ()
{
memset (used, , sizeof(used));
memset (lx, , sizeof(lx));
memset (ly, , sizeof(ly));
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
lx[i] = max (lx[i], maps[i][j]);
for (int i=; i<=n; i++)
{
for (int j=; j<=n; j++)
s[j] = INF;
while ()
{
memset (visx, , sizeof(visx));
memset (visy, , sizeof(visy));
if (Find(i))
break;
int d = INF;
for (int j=; j<=n; j++)
if (!visy[j])
d = min (s[j], d);
for (int j=; j<=n; j++)
{
if (visx[j])
lx[j] -= d;
if (visy[j])
ly[j] += d;
}
}
}
int res = ;
for (int i=; i<=n; i++)
res += maps[used[i]][i];
return res;
}
int main ()
{
int m, t;
scanf ("%d", &t);
while (t --)
{
scanf("%d %d", &n, &m);
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
maps[i][j] = -INF;
while (m --)
{
int u, v, s;
scanf ("%d %d %d", &u, &v, &s);
maps[u][v] = max(maps[u][v], -s;
}
printf ("%d\n", -KM());
}
return ;
}

Hdu 3488 Tour (KM 有向环覆盖)的更多相关文章

  1. hdu 3488 Tour

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意:给你一个N个顶点M条边的带权有向图,要你把该图分成1个或多个不相交的有向环.且所有定点都只 ...

  2. HDU 3488 Tour(最小费用流:有向环最小权值覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意: 给出n个点和m条边,每条边有距离,把这n个点分成1个或多个环,且每个点只能在一个环中,保证有解. ...

  3. HDU 3488 Tour (最大权完美匹配)【KM算法】

    <题目链接> 题目大意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每个点只能走一次)的最小费用.题目保证至少存在一个环满足条件. 解题分析: 因为要求 ...

  4. 图论(二分图,KM算法):HDU 3488 Tour

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  5. HDU - 3488 Tour (KM最优匹配)

    题意:对一个带权有向图,将所有点纳入一个或多个环中,且每个点只出现一次,求其所有环的路径之和最小值. 分析:每个点都只出现一次,那么换个思路想,每个点入度出度都为1.将一个点拆成两个点,一个作为入度点 ...

  6. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  7. Tour HDU - 3488 有向环最小权值覆盖 费用流

    http://acm.hdu.edu.cn/showproblem.php?pid=3488 给一个无源汇的,带有边权的有向图 让你找出一个最小的哈密顿回路 可以用KM算法写,但是费用流也行 思路 1 ...

  8. HDU 3488 KM Tour

    参考题解 这题注意有重边.. #include <cstdio> #include <cstring> #include <algorithm> using nam ...

  9. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

随机推荐

  1. java.sql.SQLException: [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称而且未指定默认驱动程序解决方法

    开发程序须要登录功能 .就不想用大数据库.直接用java连接access.     在自己机器上一切正常,  url直连 和配置数据源都没有问题.  公布到windows server2008 上 , ...

  2. 【APUE】信号量、互斥体和自旋锁

    http://www.cnblogs.com/biyeymyhjob/archive/2012/07/21/2602015.html http://blog.chinaunix.net/uid-205 ...

  3. 【APUE】进程间通信之管道

    管道是UNIX系统IPC最古老形式,并且所有UNIX系统都提供此种通信机制.管道由下面两种局限性: 1)历史上,它们是半双工的(即数据只能在一个方向上流动) 2)它们只能在具有公共祖先的进程之间使用. ...

  4. Semaphore使用

    Semaphore使用

  5. Linux系统启动流程分析

    作者:郭孝星 微博:郭孝星的新浪微博 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells Github:https://github.co ...

  6. #define中的#和##作用

    #define语句中的#是把参数字符串化,##是连接两个参数成为一个整体. #define FACTORY_REF(name) { #name, Make##name } 中#name就是将传入的na ...

  7. 实践部署与使用apache kafka框架技术博文资料汇总

    前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...

  8. Android中View窗口getWidth和getMeasuredWidth的差别

    今天在研究自己定义listview的下拉刷新的效果.想移植到项目需求中,再看自己定义源代码时发现了一个问题就是getWidth和getMeasuredWidth两个方法有什么差别,求教万能的百度,经调 ...

  9. iOS音频播放 (四):AudioFile 转

    原文出处 : http://msching.github.io/blog/2014/07/19/audio-in-ios-4/ 前言 接着第三篇的AudioStreamFile这一篇要来聊一下Audi ...

  10. Java正则表达式的用法

    /** * 校验时间格式,正确则返回true * @param xxx * @return */ private static boolean checkDateFormat (String xxx) ...