A - Robberies

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints 
0 < T <= 100 
0.0 <= P <= 1.0 
0 < N <= 100 
0 < Mj <= 100 
0.0 <= Pj <= 1.0 
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 

Sample Input

3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 

Sample Output

2
4
6
 
2016.4.22,在做这道题时,发现依然问题多多。
1.概率是个小数,这次第一个思路是乘100然后用其作为消耗,这显然不对,首先double转int就会有误差,其次概率之间的关系不是简单的求和(显然读题不仔细)。题目中说的是,在小于被抓住的概率下拿到最多的钱,dp[0]被抓的概率为0不被抓的概率为1,由此应讨论不被抓的概率。dp[j]中存的是拿到j的价值而不被抓的概率。最后只需从后往前判断概率大小即可。
 
 
 
 题解:用不被抓到的概率来处理,状态转移方程相对简单。把可能抢到的钱数所对应的不被抓住的概率存入dp数组,再for(i=sum;i>=0;i++)如果能抢到的最大钱数所对应的不被抓概率大于(1-p)则输出i,然后跳出循环,该i值为最大钱数
 代码:
#include<stdio.h>
double max(double a,double b)
{
return a>b?a:b;
}
int main()
{
int t,n,M[110],i,j,sum;
double p,P[110],dp[10010]; //dp为背包最大容量
scanf("%d",&t);
while(t--)
{
sum=0;
scanf("%lf%d",&p,&n);
dp[0]=1; //当抢到的钱为零时,不被抓的概率为1
for(i=0; i<n; i++)
{
scanf("%d%lf",&M[i],&P[i]);
sum+=M[i];
}
for(i=1; i<=sum; i++) //需将除dp[0]以外的所有元素初始化为零,因为状态转移方程要比较大小再赋值,见图。之前错在此处。
dp[i]=0.0;
for(i=0; i<n; i++) //此循环为遍历银行
for(j=sum; j>=M[i]; j--) //此处不易理解。假设银行(1,0.02)(2,0.03)(3,0.05) 此循环大概功能:dp[6]=dp[3]*P[3],dp[3]=dp[1]*P[2].
dp[j]=max(dp[j],dp[j-M[i]]*(1-P[i])); //状态转移方程
for(i=sum; i>=0; i--)
if(dp[i]>=(1.0-p))
{
printf("%d\n",i);
break;
}
}
return 0;
}

  

HDU_2955_Robberies_01背包的更多相关文章

  1. 【USACO 3.1】Stamps (完全背包)

    题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...

  2. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  3. HDU2159 二维完全背包

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  4. CF2.D 并查集+背包

    D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...

  5. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  6. 洛谷P1782 旅行商的背包[多重背包]

    题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...

  7. POJ1717 Dominoes[背包DP]

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6731   Accepted: 2234 Descript ...

  8. HDU3466 Proud Merchants[背包DP 条件限制]

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  9. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

随机推荐

  1. redis 事务 及发布于订阅功能

    事务: Redis事务可以一次执行多个命令,事务具有以下特征: 1.隔离操作:事务中的所有命令都会序列化.按顺序地执行,不会被其他命令打扰. 2.原子操作:事务中的命令要么全部被执行,要么全部都不执行 ...

  2. C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 VC中进程与进程之间共享内存 .net环境下跨进程、高频率读写数据 使用C#开发Android应用之WebApp 分布式事务之消息补偿解决方案

    C# .Net 多进程同步 通信 共享内存 内存映射文件 Memory Mapped 转 节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing). ...

  3. ajax 跨域查看

    var CSRF_HEADER = 'X-CSRF-Token'; var setCSRFToken = function(securityToken) { jQuery.ajaxPrefilter( ...

  4. Python学习笔记17:标准库之数学相关(math包,random包)

    前面几节看得真心累.如今先来点简单easy理解的内容. 一 math包 math包主要处理数学相关的运算. 常数 math.e   # 自然常数e math.pi  # 圆周率pi 运算函数 math ...

  5. 关于mysql建立索引 复合索引 索引类型

    这两天有个非常强烈的感觉就是自己在一些特别的情况下还是hold不住,脑子easy放空或者说一下子不知道怎么去分析问题了,比方,问"hash和btree索引的差别",这非常难吗.仅仅 ...

  6. python 【第一篇】初识python

    人生苦短,我用python Python是我喜欢的语言,简洁.优美.容易使用.所以我总是很激昂的向朋友宣传Python的好处. python起源 1989年,为了打发圣诞节假期,Guido开始写Pyt ...

  7. mongodb配置复制集replset

    Mongodb的replication主要有两种:主从和副本集(replica set).主从的原理和mysql类似,主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己 ...

  8. 中国剩余定理模板&俄罗斯乘法

    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){ if(!b){d=a;x=1LL;y=0LL;} else {ex_gcd(b,a%b,d, ...

  9. 一个shell脚本清空所有vim的配置!!

    这个是从dyl的脚本那里偷过来的哈哈--(其实我现在还不是很懂shell [ -d .vim ] && mv -v .vim .vim.$(stat -c%Y .vim) [ -f . ...

  10. android短信拦截

    广播分2种,无序广播和有序广播.可以理解为散列和队列广播. 首先无序广播,不能中断,分发机制有点类似散列发送.这种广播的的发送为:context.sendBroadcast这种广播是不能中断的,请看A ...