leetcode790 Domino and Tromino Tiling
思路:
dp。没有像discuss中的那样优化递推式。
实现:
class Solution
{
public:
const int MOD = 1e9 + ;
int numTilings(int N)
{
vector<vector<int>> dp(N + , vector<int>(, ));
dp[][] = ;
dp[][] = dp[][] = dp[][] = ;
for (int i = ; i <= N; i++)
{
dp[i][] = (((dp[i - ][] + dp[i - ][]) % MOD + dp[i - ][]) % MOD + dp[i - ][]) % MOD;
dp[i][] = (dp[i - ][] + dp[i - ][]) % MOD;
dp[i][] = (dp[i - ][] + dp[i - ][]) % MOD;
}
return dp[N][] % MOD;
}
};
leetcode790 Domino and Tromino Tiling的更多相关文章
- [Swift]LeetCode790. 多米诺和托米诺平铺 | Domino and Tromino Tiling
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may ...
- [LeetCode] Domino and Tromino Tiling 多米诺和三格骨牌
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may ...
- 790. Domino and Tromino Tiling
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may ...
- 73th LeetCode Weekly Contest Domino and Tromino Tiling
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may ...
- leetcode 790. Domino and Tromino Tiling
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may ...
- 【LeetCode】790. Domino and Tromino Tiling 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/domino-a ...
- 动态规划-填格子问题 Domino and Tromino Tiling
2018-09-01 22:38:19 问题描述: 问题求解: 本题如果是第一看到,应该还是非常棘手的,基本没有什么思路. 不妨先从一种简化的版本来考虑.如果仅有一种砖块,那么,填充的方式如下.
- [LeetCode] Minimum Window Subsequence 最小窗口序列
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
随机推荐
- asp.net mvc3的静态化实现
静态化处理,可以大大提高客户的访问浏览速度,提高用户体验,同时也降低了服务器本身的压力.在asp.net mvc3中,可以相对容易地处理静态化问题,不用过多考虑静态网页的同步,生成等等问题.我提供这个 ...
- hdu1507——Uncle Tom's Inherited Land*
Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- 【MongoDB】The description of procedure in MongoDB
In this blog the procedure of mongodb will be described in details. It is known that mongodb has pro ...
- Xcode 中的小技巧
显示或隐藏欢迎页面 Command + Shift + 1 显示欢迎页 假设不想每次打开都显示,能够将上图中的勾去掉
- Nyquist–Shannon sampling theorem 采样定理
Nyquist–Shannon sampling theorem - Wikipedia https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_s ...
- the JSON object must be str, not 'bytes'
{ "ErrorDump": "the JSON object must be str, not 'bytes'", "StatusCode" ...
- JSON: Circular Dependency Errors
If you’re using Object Relational Mapping frameworks like Hibernate, and are using the bi-directiona ...
- 关于树论【LCA树上倍增算法】
补了一发LCA,表示这东西表面上好像简单,但是细节真挺多. 我学的是树上倍增,倍增思想很有趣~~(爸爸的爸爸叫奶奶.偶不,爷爷)有一个跟st表非常类似的东西,f[i][j]表示j的第2^i的祖先,就是 ...
- 如何完成dedecms外部数据库调用|跨数据库数据调用
第1步:打开网站include\taglib文件夹中找到sql.lib.php文件,并直接复制一些此文件出来,并把复制出来的这个文件重命名为mysql.lib.php. 注:mysql.lib.php ...
- 创建cordova项目
PhoneGap是一套能让你使用HTML5轻松调用本地API接口和发布应用到商店的应用开发平台.官方说有低成本,低开发周期,轻量化等优点,这些咱暂时也没法证明,略过不表.但是有一条跨平台,却是很明显的 ...