首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案。

为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币。

一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1。

之后对于每个询问 (A1, A2, A3, A4, S) ,根据容斥原理,我们要求的答案 Ans 就是 f[S] - (硬币1超限制的方案数) - (硬币2超限制的方案数) - (硬币3超限制的方案数) - (硬币4超限制的方案数) + (硬币1,2超限制的方案数) + (硬币1,3超限制的方案数) + (硬币1,4超限制的方案数) + .... - (硬币1,2,3超限制的方案数) - ... + (硬币1,2,3,4超限制的方案数) 。

怎样求硬币1超限制的方案数呢?我们只要先固定取 (A1+1) 个硬币1,剩余的钱数随便取就可以了,就是 f[S - (A1+1) * V[1]] 。

其余的情况都类似。

容斥的部分使用搜索实现。

 

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std; #define MAXN 100010 typedef long long LL; int n;
int x;
int a[7],b[7]; LL ans; LL f[MAXN]; void dfs(int x,int k,int d)
{
if (d<0)
return ;
if (x==5)
{
if (k & 1)
ans-=f[d];
else
ans+=f[d];
return ;
}
dfs(x+1,k+1,d-(a[x]+1)*b[x]);
dfs(x+1,k,d);
} int main()
{
for (int i=1;i<=4;i++)
scanf("%d",&b[i]);
scanf("%d",&n);
f[0]=1;
for (int i=1;i<=4;i++)
for (int j=b[i];j<=MAXN;j++)
f[j]+=f[j-b[i]];
for (int i=1;i<=n;i++)
{
for (int j=1;j<=4;j++)
scanf("%d",&a[j]);
scanf("%d",&x);
ans=0;
dfs(1,0,x);
printf("%lld\n",ans);
}
return 0;
}

  

 
还有一个鬼畜算法。。搞不清楚啊。。

用容斥原理做背包。

首先,我们要先处理出四种钞票都不限的方案数。

对于每一个询问,我们利用容斥原理,答案为:得到S所有超过数量限制的方案数-硬币1超过限制的方案数-硬币2超过限制的方案数-硬币3超过限制的方案数-硬币4超过限制的方案数+硬币1、2超过限制的方案数+…+硬币1、2、3、4均超过限制的方案数。

而对于每种方案数的求法,也非常简单:假设我们要求的是F[S],则硬币1超过限制(即硬币1取的个数≥d[1]+1,不考虑硬币2、3、4是否超过限制)时的方案数即为F[S-(d[1]+1)×c[1]]。

 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int c[5];
long long F[110000];
struct{long long operator[](int pos){return pos<0?0:F[pos];}}f;
int main(int argc, char *argv[])
{
int T;scanf("%d%d%d%d%d",&c[1],&c[2],&c[3],&c[4],&T);
F[0]=1;
for(int i=1;i<=4;i++)
for(int j=0;j<=100000;j++)
if(j+c[i]<=100000)F[j+c[i]]+=F[j];
while(T--)
{
int d[5],s;scanf("%d%d%d%d%d",&d[1],&d[2],&d[3],&d[4],&s);
long long ans=f[s];
ans-=f[s-(d[1]+1)*c[1]];
ans-=f[s-(d[2]+1)*c[2]];
ans-=f[s-(d[3]+1)*c[3]];
ans-=f[s-(d[4]+1)*c[4]];
ans+=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]];
ans+=f[s-(d[1]+1)*c[1]-(d[3]+1)*c[3]];
ans+=f[s-(d[1]+1)*c[1]-(d[4]+1)*c[4]];
ans+=f[s-(d[2]+1)*c[2]-(d[3]+1)*c[3]];
ans+=f[s-(d[2]+1)*c[2]-(d[4]+1)*c[4]];
ans+=f[s-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans-=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[3]+1)*c[3]];
ans-=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[4]+1)*c[4]];
ans-=f[s-(d[1]+1)*c[1]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans-=f[s-(d[2]+1)*c[2]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans+=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
#ifdef ONLINE_JUDGE
printf("%lld\n",ans);
#else
printf("%I64d\n",ans);
#endif
}
return 0;
}

  

貌似更快一些= =

【bzoj1042】[HAOI2008]硬币购物的更多相关文章

  1. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

  2. BZOJ1042 [HAOI2008]硬币购物 完全背包 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1042 题目概括 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了t ...

  3. [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  4. bzoj1042: [HAOI2008]硬币购物

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  5. BZOJ1042:[HAOI2008]硬币购物(DP,容斥)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  6. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  7. 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)

    传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...

  8. bzoj1042: [HAOI2008]硬币购物(DP+容斥)

    1600+人过的题排#32还不错嘿嘿 浴谷夏令营讲过的题,居然1A了 预处理出f[i]表示购买价值为i的东西的方案数 然后每次询问进行一次容斥,答案为总方案数-第一种硬币超限方案-第二种超限方案-第三 ...

  9. 【BZOJ1042】[HAOI2008]硬币购物 容斥

    [BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值 ...

  10. 【BZOJ-1042】硬币购物 容斥原理 + 完全背包

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1811  Solved: 1057[Submit][Stat ...

随机推荐

  1. pycharm connect to github

    这位同学写得非常详细,推荐 http://www.cnblogs.com/feixuelove1009/p/5955332.html#undefined

  2. JAVA基础——生产者消费者问题

    1.生产者消费者问题:经典案例 生产者和消费者问题是操作系统的经典问题,在实际工作中也常会用到,主要的难点在于协调生产者和消费者,因为生产者的个数和消费者的个数不确定,而生产者的生成速度与消费者的消费 ...

  3. 邮箱地址自动提示jQuery插件

    // mailAutoComplete.js v1.0 邮箱输入自动提示// 2010-06-18 v2.0 使用CSS class类代替CSS对象,同时增强代码可读性// 2010-06-18 v2 ...

  4. PLSQL连接Oracle 报错ORA-12154:TNS:无法解析指定的连接标识符

    原因是图中第三行数据库应该填ip地址,我填了数据库名! 之前不懂原理,现来填坑,并不是应该填ip,而是填tnsname.ora中配置的名字(红框部分) ​

  5. js 技巧 (六)弹窗代码汇总

    弹窗代码汇总 [0.超完美弹窗代码] 功能:5小时弹一次+背后弹出+自动适应不同分辩率+准全屏显示 代码: <script> function openwin(){ window.open ...

  6. 15Spring泛型依赖注入

    Spring 4.x中可以为子类注入子类对应的泛型类型的成员变量的引用 BaseService<T>:有RoleService和UserService两的子类 BaseRepepositr ...

  7. *****Python之进程线程*****

    Python之进程线程 Python的threading模块   并发编程: 操作系统:位于底层硬件与应用软件之间的一层. 工作方式:向下管理硬件,向上提供接口. 进程:资源管理单位(容器) 线程:最 ...

  8. leetcode-832翻转图像

    翻转图像 思路: 先对图像进行水平翻转,然后反转图片(对每个像素进行异或操作) 代码: class Solution: def flipAndInvertImage(self, A: List[Lis ...

  9. 集训第六周 数学概念与方法 计数 排列 L题

    Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样. 话 ...

  10. PCB中贴片元器件的引脚规范(allegro)

    表贴的芯片一个引脚焊盘的宽度: 当芯片引脚间的间距>=26mil时,计算公式是(脚宽度+8mil) 当芯片引脚的间距<26mil时,计算公式是(引脚间距/2+1) 表贴的芯片一个引脚焊盘的 ...