Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16255    Accepted Submission(s): 8192

Problem Description
Before
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!

 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
 
Output
Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
Source
 
Recommend
Eddy
 
完全背包,要求恰好装满,如果不能恰好装满,则输出不可能,否则输出最小值。因为是求最小值,恰好装满,所以初始赋值正INF,f[0]=0;
#include<queue>
#include<math.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 10005
#define N 10005
#define INF 0x3f3f3f3f
int f[N];
int w[N];
int d[N];
int n, V, E, F;
int main()
{
int T;
cin >> T; while (T--)
{
scanf("%d%d", &E, &F);
V = F - E;
scanf("%d", &n); for (int i = ; i <= n; i++)
{
scanf("%d%d", &d[i], &w[i]);
} memset(f, INF, sizeof(f));
f[] = ; for (int i = ; i <= n; i++)
for (int v = w[i]; v <= V; v++)
{
if(f[v-w[i]]!=INF && f[v-w[i]]+d[i]<f[v])
f[v] = f[v - w[i]] + d[i];
} if (f[V] != INF)
{
printf("The minimum amount of money in the piggy-bank is %d.\n", f[V]);
}
else
{
printf("This is impossible.\n");
}
}
return ;
}

HDU 1114 Piggy-Bank (完全背包)的更多相关文章

  1. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  2. HDU 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...

  3. HDU - 1114 Piggy-Bank 【完全背包】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1114 题意 给出一个储钱罐 不知道里面有多少钱 但是可以通过重量来判断 先给出空储钱罐的重量 再给出装 ...

  4. 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  5. hdu(1114)——Piggy-Bank(全然背包)

    唔..近期在练基础dp 这道题挺简单的(haha).可是我仅仅想说这里得注意一个细节. 首先题意: 有T组例子,然后给出储蓄罐的起始重量E,结束重量F(也就是当它里面存满了零钱的时候).然后给你一个数 ...

  6. HDU 1114 Piggy-Bank ——(完全背包)

    差不多是一个裸的完全背包,只是要求满容量的最小值而已.那么dp值全部初始化为inf,并且初始化一下dp[0]即可.代码如下: #include <stdio.h> #include < ...

  7. HDU - 1114 Piggy-Bank(完全背包讲解)

    题意:背包重量为F-E,有N种硬币,价值为Pi,重量为Wi,硬币个数enough(无穷多个),问若要将背包完全塞满,最少需要多少钱,若塞不满输出“This is impossible.”. 分析:完全 ...

  8. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  9. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  10. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

随机推荐

  1. PYDay7&8-递归、冒泡算法、装饰器

    1.登录验证代码 1.1纯登录验证-函数实现 def login(username,password): ''' 用于用户名密码的验证 :param username: 用户名 :param pass ...

  2. 工作记录:maven远程下载的问题

    最近使用maven的时候遇到一个问题,每次构建都从https://repository.apache.org/snapshots仓库下载一些maven-metadata.xml,但是公司的环境又连不上 ...

  3. python-selenium使用send_keys()方法写中文报错的解决方法

    问题描述: 自动化操作页面,输入中文姓名: # coding=utf-8 url = "http://dealer.bitauto.com/50002218/zuidijia/" ...

  4. python linux安装anaconda

    步骤: 1.在清华大学镜像站中下载anaconda版本:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ https://mirrors.t ...

  5. Ignite集成Spark之IgniteDataFrames

    下面简要地回顾一下在第一篇文章中所谈到的内容. Ignite是一个分布式的内存数据库.缓存和处理平台,为事务型.分析型和流式负载而设计,在保证扩展性的前提下提供了内存级的性能. Spark是一个流式数 ...

  6. VM上完美运行macos

    VM上完美运行macos 作者:方辰昱 时间:十月三号 效果图 简要步骤 下载安装VM 下载镜像文件链接,darwin.iso,unlocker,beamoff.合集下载链接:https://pan. ...

  7. C#.net磁盘管理以及文件操作

    原文发布时间为:2008-08-08 -- 来源于本人的百度文章 [由搬家工具导入]    需要引入的命名空间: using System.IO;using System.Text; private ...

  8. XPath用法详解

    1.XPath是什么 XPath 是一门在 XML 文档中查找信息的语言.XPath 用于在 XML 文档中通过元素和属性进行导航(你可以理解为一种类似正则表达式的方法) 2.XPath的语法 表达式 ...

  9. python3里的Urllib库

    首先Urllib是python内置的HTTP请求库. 包括以下模块: urllib.request 请求模块: urllib.error 异常处理模块: urllib.parse url解析模块: u ...

  10. 深入探究Java中hashCode()和equals()的关系

    目录 一.基础:hashCode() 和 equals() 简介 equals() hashCode() 二. 漫谈:初识 hashCode() 与 equals() 之间的关系 三. 解密:深入理解 ...