【bzoj3123】[Sdoi2013]森林 倍增LCA+主席树+启发式合并
题目描述
.jpg)
输入
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
输出
对于每一个第一类操作,输出一个非负整数表示答案。
样例输入
1
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6
样例输出
2
2
1
4
2
题解
倍增LCA+主席树+启发式合并
如果没有连边操作,那么本题同 bzoj2588 。
好在本题的n只有80000,所以我们可以使用一些高(qi)端(ji)姿(yin)势(qiao)来解决。
由于只有连边没有删边,所以可以使用启发式合并,暴力将较小的树连到较大的树上,从连接点开始再dfs一遍更新fa和deep。
同时需要记录每棵树的大小,相当于记录每个点的树根。
然后就是建树,求LCA,求出答案。
这里需要注意的一点是,对于不同的倍增LCA的写法,如果写法中利用到f[x][...]=0,那么务必在连边时将原来的f数组清空,否则当原深度大于新深度时会WA->RE。
#include <cstdio>
#include <algorithm>
#define N 80010
using namespace std;
int n , w[N] , a[N] , ref[N] , head[N] , to[N << 1] , next[N << 1] , cnt , fa[N][20] , deep[N] , log[N] , bl[N] , si[N];
int ls[N << 8] , rs[N << 8] , sum[N << 8] , root[N] , tot;
char str[5];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void insert(int p , int l , int r , int x , int &y)
{
if(!y) y = ++tot;
sum[y] = sum[x] + 1;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) rs[y] = rs[x] , insert(p , l , mid , ls[x] , ls[y]);
else ls[y] = ls[x] , insert(p , mid + 1 , r , rs[x] , rs[y]);
}
int query(int p , int l , int r , int a , int b , int c , int d)
{
if(l == r) return ref[l];
int mid = (l + r) >> 1;
if(sum[ls[a]] + sum[ls[b]] - sum[ls[c]] - sum[ls[d]] >= p) return query(p , l , mid , ls[a] , ls[b] , ls[c] , ls[d]);
else return query(p - sum[ls[a]] - sum[ls[b]] + sum[ls[c]] + sum[ls[d]] , mid + 1 , r , rs[a] , rs[b] , rs[c] , rs[d]);
}
void dfs(int x , int r)
{
int i;
bl[x] = r , si[r] ++ ;
insert(w[x] , 1 , n , root[fa[x][0]] , root[x]);
for(i = 1 ; i <= log[deep[x]] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i] , r);
}
int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; i >= 0 ; i -- )
if(deep[x] - deep[y] >= (1 << i))
x = fa[x][i];
for(i = log[deep[x]] ; i >= 0 ; i -- )
if(deep[x] >= (1 << i) && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return x == y ? x : fa[x][0];
}
int main()
{
int m , q , i , t , x , y , z , last = 0;
scanf("%*d%d%d%d" , &n , &m , &q);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , a[i] = w[i];
sort(a + 1 , a + n + 1);
for(i = 1 ; i <= n ; i ++ ) t = w[i] , w[i] = lower_bound(a + 1 , a + n + 1 , w[i]) - a , ref[w[i]] = t;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
log[0] = -1;
for(i = 2 ; i <= n ; i ++ ) log[i] = log[i >> 1] + 1;
for(i = 1 ; i <= n ; i ++ ) if(!fa[i][0]) dfs(i , i);
while(q -- )
{
scanf("%s%d%d" , str , &x , &y) , x ^= last , y ^= last;
if(str[0] == 'Q')
{
scanf("%d" , &z) , z ^= last , t = lca(x , y);
printf("%d\n" , last = query(z , 1 , n , root[x] , root[y] , root[t] , root[fa[t][0]]));
}
else
{
if(si[bl[x]] < si[bl[y]]) swap(x , y);
fa[y][0] = x , deep[y] = deep[x] + 1 , dfs(y , bl[x]) , add(x , y) , add(y , x);
}
}
return 0;
}
【bzoj3123】[Sdoi2013]森林 倍增LCA+主席树+启发式合并的更多相关文章
- [bzoj3123][洛谷P3302] [SDOI2013]森林(树上主席树+启发式合并)
传送门 突然发现好像没有那么难……https://blog.csdn.net/stone41123/article/details/78167288 首先有两个操作,一个查询,一个连接 查询的话,直接 ...
- 洛谷 P3302 [SDOI2013]森林 Lebal:主席树 + 启发式合并 + LCA
题目描述 小Z有一片森林,含有N个节点,每个节点上都有一个非负整数作为权值.初始的时候,森林中有M条边. 小Z希望执行T个操作,操作有两类: Q x y k查询点x到点y路径上所有的权值中,第k小的权 ...
- p3302 [SDOI2013]森林(树上主席树+启发式合并)
对着题目yy了一天加上看了一中午题解,终于搞明白了我太弱了 连边就是合并线段树,把小的集合合并到大的上,可以保证规模至少增加一半,复杂度可以是\(O(logn)\) 合并的时候暴力dfs修改倍增数组和 ...
- 【主席树 启发式合并】bzoj3123: [Sdoi2013]森林
小细节磕磕碰碰浪费了半个多小时的时间 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M ...
- [bzoj3123] [SDOI2013]森林 主席树+启发式合并+LCT
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- P3302 [SDOI2013]森林(主席树+启发式合并)
P3302 [SDOI2013]森林 主席树+启发式合并 (我以前的主席树板子是错的.......坑了我老久TAT) 第k小问题显然是主席树. 我们对每个点维护一棵包含其子树所有节点的主席树 询问(x ...
- Bzoj 3123: [Sdoi2013]森林(主席树+启发式合并)
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当前 ...
- 【BZOJ-3123】森林 主席树 + 启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2738 Solved: 806[Submit][Status] ...
- BZOJ_3123_[Sdoi2013]森林_主席树+启发式合并
BZOJ_3123_[Sdoi2013]森林_主席树+启发式合并 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20 ...
随机推荐
- 20170308web作业1
代码20170308001: <%@ page language="java" import="java.util.*" pageEncoding=&qu ...
- 深入浅出Android动态加载jar包技术
在实际项目中,由于某些业务频繁变更而导致频繁升级客户端的弊病会造成较差的用户体验,而这也恰是Web App的优势,于是便衍生了一种思路,将核心的易于变更的业务封装在jar包里然后通过网络下载下来,再由 ...
- 最小化安装centos后ifconfig看不到eth0
最小换安装centos后,ifconfig看不到eth0,只看到一个lo ifup eth0
- 大数据freestyle: 共享单车轨迹数据助力城市合理规划自行车道
编者按:近年来,异军突起的共享单车极大地解决了人们共同面临的“最后一公里”难题,然而,共享单车发展迅猛,自行车道建设却始终没有能够跟上脚步.幸运的是摩拜单车大量的轨迹数据为我们提供了一种新的思路:利用 ...
- 精仿百思不得姐客户端应用iOS源码
XFBaiSiBuDeJie 高仿百思不得姐客户端 初次学习使用RAC,还不是怎么熟悉,使用的仍是MVC模式,MVVM还在摸索中... 如果大家觉得还不错,请给颗星星支持下~~~ 程序中使用到的库 A ...
- (十)maven之排除冲突jar包
排除冲突jar包 jar包冲突 <dependencies> <dependency> <groupId>org.springframework</group ...
- poj2312Battle City BFS
题意: M行N列矩阵, 'Y'表示开始位置, 'T'表示目标位置, 从开始位置到目标位置至少需要走多少步,其中, 'S', 'R'表示不能走, 'B' 花费为2, 'E'花费为1. 思路:纯 BFS. ...
- 数据库web项目对数据库的操作
1.0.JSTL与jsp实现对数据库的操作 MySql 数据库: create database if not exists CommodityDB; use CommodityDB; drop ta ...
- 接口和类方法中的 SELF
接口和类方法中的 SELF 由 王巍 (@ONEVCAT) 发布于 2015/06/10 我们在看一些接口的定义时,可能会注意到出现了首字母大写的 Self 出现在类型的位置上: protocol I ...
- C++高精度乘法
#include <cstdio> #include <iostream> #include <algorithm> void highPrecision (int ...