线性基

首先我们发现,对于一条路径走过去再走回来是没有意义的,

所以我们可以没有任何其他影响的取得一个环的异或和

所以我们预处理出来所有环的异或和,求出他们的线性基,然后任找一条 \(1 \sim n\) 的路径,找出异或和的最大值

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define ll long long
#define MB 62
using namespace std;
const int MAXN = 400005;
struct edge{
int to, nxt;
ll dis;
}e[MAXN<<1];
int head[MAXN], nume, n, m, tot;
ll a[MAXN], lb[MAXN], d[MAXN];
bool f[MAXN];
void adde(int from, int to, ll dis) {
e[++nume].to = to;
e[nume].dis = dis;
e[nume].nxt = head[from];
head[from] = nume;
}
ll init() {
ll rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
void dfs(int u, int fa) {
f[u] = 1;
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if(v != fa &&!f[v]) {
d[v] = d[u] ^ e[i].dis;
dfs(v, u);
}else if(v != fa) {
a[++tot] = d[u] ^ d[v] ^ e[i].dis;
}
}
}
void prepare(){
for(int i = 1; i <= tot; i++) {
for(int j = MB; j >= 0; j--) {
if(a[i] & (1ll << j)) {
if(!lb[j]){
lb[j] = a[i];
for(int k = j - 1; k >= 0; k--) if(lb[k] && (lb[j] & (1ll << k))) lb[j] ^= lb[k];
for(int k = j + 1; k <= MB; k++) if(lb[k] & (1ll << j)) lb[k] ^= lb[j];
break;
}else a[i] ^= lb[j];
}
}
}
}
int main() {
n = init(); m = init();
for(int i = 1; i <= m; i++) {
int u = init(), v = init();
ll dis = init();
adde(u, v, dis); adde(v, u, dis);
}
dfs(1, 0);
prepare();
ll ans = d[n];
for(int i = MB; i >= 0; i--) {
if((ans ^ lb[i]) > ans) ans ^= lb[i];
}
cout<<ans<<endl;
return 0;
}

洛谷 [P4151] 最大异或和路径的更多相关文章

  1. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  2. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  3. [洛谷P4151][WC2011]最大XOR和路径

    题目大意:给你一张$n$个点$m$条边的无向图,求一条$1->n$的路径,使得经过路径值的异或值最大(重复经过重复计算) 题解:某条路$k$被重复走了两次,那么它的权值对答案的贡献就是$0$,但 ...

  4. 洛谷P4151 [WC2011]最大XOR和路径(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 首先看到异或就想到线性基 我们考虑有一条路径,那么从这条路径走到图中的任意一个环再走回这条路径上,对答案的贡献是这个环的异或和,走到这个环上的路径对 ...

  5. 洛谷 P4151 BZOJ 2115 [WC2011]最大XOR和路径

    //bzoj上的题面太丑了,导致VJ的题面也很丑,于是这题用洛谷的题面 题面描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如 ...

  6. 洛谷 P3359 改造异或树

    题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...

  7. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

  8. 【洛谷】P1052 过河【DP+路径压缩】

    P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...

  9. 洛谷P4151 最大XOR和路径 [WC2011] 线性基+图论

    正解:线性基+图论 解题报告: 传送门 首先可以思考一下有意义的路径会是什么样子,,,那就一定是一条链+一些环 挺显然的因为一条路径原路返回有没有意义辣?所以一定是走一条链+一些环(当然也可以麻油环, ...

随机推荐

  1. The Django Book 第三章 试图和URL配置

    之前自学Django也有一段时间了,再过一个月就要入职新公司了(Python Django开发),即使现在还在入门级徘徊,再好好把Django基础过一遍吧. The Django Book 第三章 试 ...

  2. 苹果电脑macbook怎样强制关闭软件

    尝试快捷键Command+Q 选择当前处于界面最前端的应用,同时按住Command+Q退出程序,并不代表强制退出应用,主要用于一些假死的应用. 2 通过快捷键Command+option+Shift+ ...

  3. 以太坊开发框架Truffle学习笔记

    from http://truffleframework.com/docs/getting_started/project 1. 安装node.js 8.11.2 LTS 2. 安装Truffle $ ...

  4. 基于PassThru的NDIS中间层驱动程序扩展

    基于PassThru的NDIS中间层驱动程序扩展                                  独孤求真 概要:开发一个NDIS驱动是一项相对复杂的工作,这一方面是由于核心驱动本身 ...

  5. ios 注册功能研究学习

    通常,移动App的注册功能通常采用手机号码注册或者邮箱帐号注册. 不过在国内这样隐私堪忧的环境下,需要手机号来注册会流失不少用户.即便是新浪微博这样的应用,需要绑定手机号也令我不信任.除非是像淘宝.支 ...

  6. (62)zabbix客户端自动注册

    1. 概述 上一篇内容<zabbix自动发现配置>,大概内容是zabbix server去扫描一个网段,把在线的主机添加到Host列表中. 我们本篇内容与上篇相反,这次是Active ag ...

  7. docker:安装redis

    文章来源:https://www.cnblogs.com/hello-tl/p/9239474.html 1.添加镜像 # docker pull redis:4.0 2.在/data下新建文件夹re ...

  8. Python3 安装pip 提示ModuleNotFoundError: No module named 'distutils.util'

    环境ubutun14,python版本是python3.6. 今天在安装Pip 时出现ModuleNotFoundError: No module named 'distutils.util'.操作步 ...

  9. 细说unittest-2

    一.unittest模块官方文档: https://docs.python.org/3/library/unittest.html 二.一张图看懂unittest: 三.Unittest主要方法属性: ...

  10. Python Hashlib笔记

    #python3.4hashlib module - A common interface to many hash functions.hash.digest() - Return the dige ...