【题目分析】

GSS1的基础上增加修改操作。

同理线段树即可,多写一个函数就好了。

【代码】

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib> #include <map>
#include <set>
#include <queue>
#include <string>
#include <iostream>
#include <algorithm> using namespace std; #define maxn 2000005
#define eps 1e-8
#define db double
#define ll long long
#define inf 0x3f3f3f3f
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i) void Finout()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
// freopen("wa.txt","w",stdout);
#endif
} ll Getll()
{
ll x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} ll buf=100005,next[maxn],pos[maxn]; struct Node{
ll lx,rx,mx,sum;
Node operator + (Node x)
{
Node ret;
ret.lx=max(lx,sum+x.lx);
ret.rx=max(x.sum+rx,x.rx);
ret.sum=sum+x.sum;
ret.mx=max(max(mx,x.mx),max(rx+x.lx,max(ret.lx,ret.rx)));
return ret;
}
}t[maxn]; ll n,a[maxn],q,L,R,x,c; struct Problem{ll l,r,id,ans;}p[maxn]; bool cmp1(Problem x,Problem y)
{return x.l==y.l?x.r<y.r:x.l<y.l;}
bool cmp2(Problem x,Problem y)
{return x.id<y.id;} void Build(ll o,ll l,ll r)
{
if (l==r)
{
t[o].lx=t[o].rx=t[o].mx=t[o].sum=a[l];
return ;
}
ll mid=l+r>>1;
Build(o<<1,l,mid);
Build(o<<1|1,mid+1,r);
t[o]=t[o<<1]+t[o<<1|1];
} Node Query(ll o,ll l,ll r)
{
if (L<=l&&r<=R) return t[o];
ll mid=l+r>>1;
if (L>mid) return Query(o<<1|1,mid+1,r);
else if (R<=mid) return Query(o<<1,l,mid);
else return Query(o<<1,l,mid)+Query(o<<1|1,mid+1,r);
} void Modify(ll o,ll l,ll r)
{
if (l==r)
{
t[o].lx=t[o].rx=t[o].mx=t[o].sum=c;
return ;
}
ll mid=l+r>>1;
if (x<=mid) Modify(o<<1,l,mid);
else Modify(o<<1|1,mid+1,r);
t[o]=t[o<<1]+t[o<<1|1]; } int main()
{
Finout(); n=Getll();
// printf("%lld\n",n);
F(i,1,n) a[i]=Getll();
// F(i,1,n) printf("%lld ",a[i]);
// printf("\n");
Build(1,1,n); q=Getll();
F(i,1,q)
{
ll opt=Getll();
switch (opt)
{
case 1:
L=Getll();
R=Getll();
printf("%lld\n",Query(1,1,n).mx);
break;
case 0:
x=Getll();
c=Getll();
Modify(1,1,n);
break;
}
}
}

  

SPOJ GSS3 Can you answer these queries III ——线段树的更多相关文章

  1. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  2. spoj 1557 GSS3 - Can you answer these queries III 线段树

    题目链接 给出n个数, 2种操作, 一种是将第x个数改为y, 第二种是询问区间[x,y]内的最大连续子区间. 开4个数组, 一个是区间和, 一个是区间最大值, 一个是后缀的最大值, 一个是前缀的最大值 ...

  3. SP1716 GSS3 - Can you answer these queries III 线段树

    问题描述 [LG-SP1716](https://www.luogu.org/problem/SP1716] 题解 GSS 系列的第三题,在第一题的基础上带单点修改. 第一题题解传送门 在第一题的基础 ...

  4. 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III

    GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...

  5. SPOJ 1557. Can you answer these queries II 线段树

    Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...

  6. bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树

    2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 145 ...

  7. SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)

    Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...

  8. GSS5 spoj 2916. Can you answer these queries V 线段树

    gss5 Can you answer these queries V 给出数列a1...an,询问时给出: Query(x1,y1,x2,y2) = Max { A[i]+A[i+1]+...+A[ ...

  9. SPOJ 2916 Can you answer these queries V(线段树-分类讨论)

    题目链接:http://www.spoj.com/problems/GSS5/ 题意:给出一个数列.每次查询最大子段和Sum[i,j],其中i和j满足x1<=i<=y1,x2<=j& ...

随机推荐

  1. svn亲笔操作

    1. 创建版本库 [root@iZ28dftuhfaZ db]# svnadmin create /var/svn-repositories/app-api/ . 导入数据到你的版本库[root@iZ ...

  2. MySQL流程控制和存储过程介绍

    /*定义变量方式1:set @变量名=值;方式2:select 值 into @变量名;方式3:declare 变量名 类型(字符串类型加范围) default 值; in参数 入参的值会仅在存储过程 ...

  3. 在ABAP里模拟实现Java Spring的依赖注入

    Dependency Injection- 依赖注入,在Java Spring框架中有着广泛地应用.通过依赖注入,我们不必在应用代码里繁琐地初始化依赖的资源,非常方便. 那么ABAP能否从语言层面上也 ...

  4. block的优势

    https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Blocks/Articles/bxOvervie ...

  5. jQuery中ready方法的实现

    https://blog.csdn.net/major_zhang/article/details/80146674 先普及一下jquery.ready()和window.onload,window. ...

  6. k8s学习目录

    目录 K8S基础部分 基础部分 5 秒创建 k8s 集群[转] k8s 核心功能[转] k8s 重要概念[转] 部署 k8s Cluster(上)[转] 部署 k8s Cluster(下)[转] Ku ...

  7. Codeforces Round #273 (Div. 2)-B. Random Teams

    http://codeforces.com/contest/478/problem/B B. Random Teams time limit per test 1 second memory limi ...

  8. request :fail url not in domain list

    1.可点击开发者工具右上角 详情-域名信息,看看是否配置了域名: 2. 手机预览小程序的时候,打开调试

  9. Bzoj 4720 换教室 (期望DP)

    刚发现Bzoj有Noip的题目,只会换教室这道题..... Bzoj 题面:Bzoj 4720 Luogu题目:P1850 换教室 大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大 ...

  10. Web框架之Django_04 模板层了解(过滤器、标签、自定义过滤器、标签、inclusion_tag、模板的继承与导入)

    摘要: 模版层(模板语法) 模板语法 过滤器 标签 自定义过滤器.标签 inclusion_tag 模板的继承 模板的导入 一.模板语法: 常用语法:{{     }}    变量相关{% %}    ...