集训第五周动态规划 C题 编辑距离
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC
11 AGTAAGTAGGC
Sample Output
4 经典的LIS变种,编辑距离
很显然这道题使用一般的方法是做不出来的,因为这道题要求输出的操作数最少,每一步的方法都应该最优。
所以DP
状态表示:dp[i][j]表示两个字符串
最优子结构:dp[i][j]表示从a[i]到b[j]完全匹配的最小操作数
状态转移方程:1.dp[i][j]=dp[i-1][j-1] (a[i]=b[j]) //相等无需变化,因此操作数也不增加
2.dp[i][j]=min{dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1} (a[i]!=b[j]) //不相等还要考虑替换,插入操作
3.dp[i][0]=i,dp[0][i]=i //这是初始化步骤,这符合规律,因为这种情况下只能执行删除操作,而这也是动态规划往后扩展的基石
#include"iostream"
#include"cstdio"
using namespace std; const int maxn=; int m,n,len,ans;
char a[maxn],b[maxn];
int dp[][]; void Work()
{
len=max(m,n);
for(int i=;i<=len;i++)
{
dp[i][]=i;
dp[][i]=i;
}
for(int i=;i<=m;i++)
{
for(int j=;j<=n;j++)
{
dp[i][j]=min(dp[i-][j],dp[i][j-])+;
if(a[i]==b[j])
dp[i][j]=dp[i-][j-];
else
dp[i][j]=min(dp[i][j],dp[i-][j-]+);
}
}
ans=dp[m][n];
} void Print()
{
cout<<ans<<endl;
} int main()
{
while(~scanf("%d %s",&m,a+))
{
scanf("%d %s",&n,b+);
Work();
Print();
}
return ;
}
O(OO)O
集训第五周动态规划 C题 编辑距离的更多相关文章
- 集训第五周动态规划 G题 回文串
Description A palindrome is a symmetrical string, that is, a string read identically from left to ri ...
- 集训第五周动态规划 D题 LCS
Description In a few months the European Currency Union will become a reality. However, to join the ...
- 集训第五周 动态规划 B题LIS
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Des ...
- 集训第五周动态规划 I题 记忆化搜索
Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...
- 集训第五周动态规划 H题 回文串统计
Hrdv is interested in a string,especially the palindrome string.So he wants some palindrome string.A ...
- 集训第五周动态规划 F题 最大子矩阵和
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous s ...
- 集训第五周 动态规划 K题 背包
K - 背包 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- 集训第五周动态规划 J题 括号匹配
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- 集训第五周动态规划 E题 LIS
Description The world financial crisis is quite a subject. Some people are more relaxed while others ...
随机推荐
- CAD中的相对坐标和绝对坐标
绝对坐标就是你作图的整个界限的原点,也就是CAD系统默认的原点坐标. 相对坐标就是相对于当前的点的坐标. 这两种坐标都有,可以根据习惯和需要自己看使用哪种. 一.绝对坐标 ①笛卡尔坐标(X,Y,Z) ...
- 人工智能(七)逻辑Agent
一.逻辑 逻辑是一种可以从中找出结论的形式化语言. 句法(规则)用语言定义句子. 语义定义句子的含义.定义一个句子的真假性. 二.蕴含 即一个事情逻辑上是另一个事情的必然结果:KB ╞ α 知识库KB ...
- Jumping Jack CodeForces - 11B
Jumping Jack CodeForces - 11B 就是一个贪心. 基本思路: 正负没有关系,先取绝对值. 首先跳过头,然后考虑怎么回来. 设超过头的步数为kk.如果kk为偶数,那么直接在前面 ...
- 204 Count Primes 计数质数
计算所有小于非负整数 n 的质数数量. 详见:https://leetcode.com/problems/count-primes/description/ Java实现: 埃拉托斯特尼筛法:从2开始 ...
- hihocoder offer收割编程练习赛12 B 一面砖墙
思路: 就是求哪个长度出现的次数最多. 实现: #include <iostream> #include <cstdio> #include <algorithm> ...
- Red Hat Linux常用命令
1.查看机器型号 [root@local ~]# dmidecode | grep "Product Name" Product Name: VMware Virtual Plat ...
- RegisterClientScriptBlock和RegisterStartupScript的区别
RegisterClientScriptBlock在 Page 对象的 元素的开始标记后立即发出客户端脚本,RegisterStartupScript则是在Page 对象的 元素的结束标记之前发出该脚 ...
- MSSQL 重新生成索引,重新组织索引
> 5% 且 < = 30% ALTER INDEX REORGANIZE > 30% ALTER INDEX REBUILD WITH (ONLINE = ON)* * 重新生成索 ...
- 当前主要的常用的PHP环境部署套件比较
当前主要的常用的PHP环境部署套件比较 作为新手,需要学习PHP,或者需要搭建PHP+MySQL运行环境时,就需要去找各种搭建方法,一步一步按照操作流程操作,不仅繁琐,而且容易出错,还会带来安全隐患. ...
- 正则表达式,匹配查找函数(preg_match_all)flags参数对比
格式: int preg_match_all ( string pattern, string subject, array matches [, int flags] ) 参数 flags 选项有以 ...