FFT快速傅立叶 bzoj-2179

题目大意:给出两个n位10进制整数x和y,你需要计算x*y。

注释:$1\le n\le 6\times 10^4$。


想法

$FFT$入门题。

$FFT$实现的就是多项式乘法,进而我们可以通过它优化卷积。

但是有一点:$FFT$优化的卷积是所有的都求出来而不能单独优化一次。

比如说:$c_i=\sum_{j=0}^i a_j\times b_{i-j}$。

$FFT$可以在$O(nlogn)$的时间内求出所有的$c$,但是不能只求一个。

附上$FFT$的模板:

typedef double db;
const db pi=acos(-1);
struct cp
{
db x,y;
cp() {x=y=0;}
cp(db x_,db y_) {x=x_,y=y_;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
};
void fft(cp *a,int len,int flg)
{
int i,j,k,t;
cp w,wn,tmp;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(k=2;k<=len;k<<=1)
{
t=k>>1;
wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k));
for(i=0;i<len;i+=k)
{
w=cp(1,0);
for(j=i;j<i+t;j++)
{
tmp=a[j+t]*w;
a[j+t]=a[j]-tmp;
a[j]=a[j]+tmp;
w=w*wn;
}
}
}
if(flg==-1) for(i=0;i<len;i++) a[i].x/=len;
}

而这个题就是将每一位看成多项式的系数,然后用$FFT$算多项式乘法即可,注意进位。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 60010
using namespace std;
typedef double db;
char s1[N<<1],s2[N<<1];
int ans[N<<2];
const db pi=acos(-1);
struct cp
{
db x,y;
cp() {x=y=0;}
cp(db x_,db y_) {x=x_,y=y_;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N<<2],b[N<<2];
void fft(cp *a,int len,int flg)
{
int i,j,k,t;
cp tmp,w,wn;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(k=2;k<=len;k<<=1)
{
wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k));
t=k>>1;
for(i=0;i<len;i+=k)
{
w=cp(1,0);
for(j=i;j<i+t;j++)
{
tmp=a[j+t]*w;
a[j+t]=a[j]-tmp;
a[j]=a[j]+tmp;
w=w*wn;
}
}
}
if(flg==-1) for(i=0;i<len;i++) a[i].x/=len;
}
int main()
{
int n; cin >> n ; int len=1;
while(len<=(n<<1)) len<<=1;
scanf("%s%s",s1,s2);
for(int i=0;i<n;i++) a[i].x=s1[n-i-1]-'0',b[i].x=s2[n-i-1]-'0';
fft(a,len,1); fft(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
fft(a,len,-1);
for(int i=0;i<len;i++)ans[i]=a[i].x+0.5;
for(int i=0;i<len;i++) ans[i+1]+=ans[i]/10,ans[i]%=10;
while(!ans[len]&&len) len--;
for(int i=len;~i;i--) printf("%1d",ans[i]); puts("");
return 0;
}

小结:$FFT$贼好玩....

[bzoj2179]FFT快速傅立叶_FFT的更多相关文章

  1. BZOJ2179: FFT快速傅立叶 & caioj1450:【快速傅里叶变换】大整数乘法

    [传送门:BZOJ2179&caioj1450] 简要题意: 给出两个超级大的整数,求出a*b 题解: Rose_max出的一道FFT例题,卡掉高精度 = =(没想到BZOJ也有) 只要把a和 ...

  2. bzoj2179: FFT快速傅立叶

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  3. bzoj千题计划166:bzoj2179: FFT快速傅立叶

    http://www.lydsy.com/JudgeOnline/problem.php?id=2179 FFT做高精乘 #include<cmath> #include<cstdi ...

  4. BZOJ2179:FFT快速傅立叶(FFT)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  5. BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法

    Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...

  6. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  7. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  8. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  9. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

随机推荐

  1. 工作记录 angular页面操作 MD5加密

    今天只是做页面,基于angularjs,有美工做的图打底,确实好用 密码保存,用到了C# MD5加密: https://www.cnblogs.com/healer007/p/5062189.html

  2. CSS定位内容

    div.h1 或 p 元素常常被称为块级元素.这意味着这些元素显示为    一块内容,即“块框”.与之相反,span 和 strong 等元素称为“行    内元素”,这是因为它们的内容显示在行中,即 ...

  3. Spark学习之基于MLlib的机器学习

    Spark学习之基于MLlib的机器学习 1. 机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定. 2. MLlib完成文本分类任 ...

  4. KMS

    slmgr -ipk 73KQT-CD9G6-K7TQG-66MRP-CQ22C

  5. CREATE TABLE - 定义一个新表

    SYNOPSIS CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } ] TABLE table_name ( { column_name data_ty ...

  6. ALTER DOMAIN - 改变一个域的定义

    SYNOPSIS ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT } ALTER DOMAIN name { SET | DROP ...

  7. 边框带阴影 box-shadow

    .chosen-container-active .chosen-single { border: 1px solid #5897fb; -webkit-box-shadow: 0 0 5px rgb ...

  8. 解决android的键盘弹出时,html页面的高度被压缩

    如果元素的高度是用100%表示,那么,安卓的键盘弹出时,高度会发生变化,导致布局混乱,所以最好给高度设置像素高度 $("html,body").height(window.inne ...

  9. 变量加.self

    self相当于java里面的this,表示类的对象本身.加个self.是为了调用对应的set方法,如果不加,就不调用,不掉用就会造成引用计数的retainCount不加一,不加一就会被直接释放,结果就 ...

  10. [Luogu] P1131 [ZJOI2007]时态同步

    题目描述 题目描述 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3…进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何 ...