spark学习(2)---RDD
一、打印RDD内容
https://blog.csdn.net/wengyupeng/article/details/52808503
1、方法
2种方式:
1 rdd.collect().foreach {println}
2 rdd.take(10).foreach { println } //take(10) 取前10个
2、例子
val logData = sparkcontext.textFile(logFile, 2).cache()
logData.collect().foreach {println}
logData.take(10).foreach { println }
二、Spark RDD Key-Value基本转换和动作运算实例
https://blog.csdn.net/qq_25948717/article/details/81913523
创建Key-Value RDD
kvRDD1 = sc.parallelize([(3,6),(6,9),(3,4),(5,6),(1,2)])
转换:取key和value
>>> kvRDD1.collect()
[(3, 6), (6, 9), (3, 4), (5, 6), (1, 2)]
>>> kvRDD1.keys().collect()
[3, 6, 3, 5, 1]
>>> kvRDD1.values().collect()
[6, 9, 4, 6, 2]
filter:
>>> kvRDD1.filter(lambda keyValue:keyValue[0]<5).collect()
[(3, 6), (3, 4), (1, 2)]
>>> kvRDD1.filter(lambda keyValue:keyValue[1]<5).collect()
[(3, 4), (1, 2)]
mapValues:针对RDD每一组(Key,Value)进行运算
>>> kvRDD1.mapValues(lambda x:x**2).collect()
[(3, 36), (6, 81), (3, 16), (5, 36), (1, 4)]
sortByKey:默认从小到大按照key排序
>>> kvRDD1.sortByKey(ascending=True).collect()
[(1, 2), (3, 6), (3, 4), (5, 6), (6, 9)]
reduceByKey():按照key值进行reduce运算,将相同的key的value相加
>>> kvRDD1.reduceByKey(lambda x,y:x+y).collect()
[(5, 6), (1, 2), (6, 9), (3, 10)]
多个RDD Key-Value转换运算
>>> kvRDD2 = sc.parallelize([(3,6),(3,8),(6,12)])
>>> kvRDD1 = sc.parallelize([(3,6),(6,9),(3,4),(5,6),(1,2)])
jion:将两个RDD按照相同的key值jion起来
>>> kvRDD1.join(kvRDD2).collect()
[(3, (6, 6)), (3, (6, 8)), (3, (4, 6)), (3, (4, 8)), (6, (9, 12))]
leftOuterJoin:如何左边的key值在右边中没有,那么join时value就显示None
>>> kvRDD1.leftOuterJoin(kvRDD2).collect()
[(1, (2, None)), (3, (6, 6)), (3, (6, 8)), (3, (4, 6)), (3, (4, 8)), (5, (6, None)), (6, (9, 12))]
>>> kvRDD1.rightOuterJoin(kvRDD2).collect()
[(3, (6, 6)), (3, (6, 8)), (3, (4, 6)), (3, (4, 8)), (6, (9, 12))]
subtractByKey:删除相同key的数据
>>> kvRDD1.subtractByKey(kvRDD2).collect()
[(1, 2), (5, 6)]
Key-Value动作运算
>>> kvRDD1.first()
(3, 6)
>>> kvRDD1.take(3)
[(3, 6), (6, 9), (3, 4)]
>>> kvRDD1.first()[0]
3
>>> kvRDD1.first()[1]
6
>>> kvRDD1.countByKey()
defaultdict(<class 'int'>, {3: 2, 6: 1, 5: 1, 1: 1})
查看key值得value有那些?
>>> kvRDD1.lookup(3)
[6, 4]
三、RDD与dataframe的转换
https://blog.csdn.net/lxhandlbb/article/details/52367605
DataFrame是一个带有列名的分布式数据集合。等同于一张关系型数据库中的表或者R/Python中的data frame,不过在底层做了很多优化;我们可以使用结构化数据文件、Hive tables,外部数据库或者RDDS来构造DataFrames。
一、利用反射推断Schema
Spark SQL能够将含Row对象的RDD转换成DataFrame,并推断数据类型。通过将一个键值对(key/value)列表作为kwargs传给Row类来构造Rows。key定义了表的列名,类型通过看第一列数据来推断。(所以这里RDD的第一列数据不能有缺失)未来版本中将会通过看更多数据来推断数据类型,像现在对JSON文件的处理一样。
二、编程指定Schema
通过编程指定Schema需要3步:
1.从原来的RDD创建一个元祖或列表的RDD。
2.用StructType 创建一个和步骤一中创建的RDD中元祖或列表的结构相匹配的Schema。
3.通过SQLContext提供的createDataFrame方法将schema 应用到RDD上。
spark学习(2)---RDD的更多相关文章
- Spark学习之RDD编程(2)
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RD ...
- Spark学习之RDD
RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 ...
- Spark学习之RDD编程总结
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...
- Spark学习笔记——RDD编程
1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...
- spark学习(10)-RDD的介绍和常用算子
RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他 ...
- Spark学习之RDD的理解
转自:http://www.infoq.com/cn/articles/spark-core-rdd/ 感谢张逸老师的无私分享 RDD,全称为Resilient Distributed Dataset ...
- spark 学习(二) RDD及共享变量
声明:本文基于spark的programming guide,并融合自己的相关理解整理而成 Spark应用程序总是包括着一个driver program(驱动程序),它运行着用户的main方 ...
- spark学习(RDD案例实战)
练习0(并行化创建RDD) 先启动spark-shell 通过并行化生成rdd scala> val rdd1 = sc.parallelize(List(63,45,89,23,144,777 ...
- Spark学习(2) RDD编程
什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允 ...
- Spark学习摘记 —— RDD行动操作API归纳
本文参考 参考<Spark快速大数据分析>动物书中的第三章"RDD编程",前一篇文章已经概述了转化操作相关的API,本文再介绍行动操作API 和转化操作API不同的是, ...
随机推荐
- 并不对劲的bzoj4198:loj2132:uoj130:p2168:[NOI2015]荷马史诗
题目大意 有\(n\)(\(n\leq10^5\))种单词,其中第\(i\)种单词在文章中的出现次数为\(w_i\) 要将每个单词替换成一个字符集为\(k\)(\(k\leq9\))的字符串,使对于任 ...
- 查看html元素绑定的事件与方法 visual Event 插件
WEB标准提倡结构.表现和行为相 分离,现在越来越多采用这种表现和行为的方式,但它也为我们开发调试带来一些问题,网页载入一堆JavaScript,,我们很难搞清楚最后在哪些元素的哪个动作绑定了事件,尤 ...
- bzoj1756
1756: Vijos1083 小白逛公园 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1150 Solved: 371[Submit][Statu ...
- Python解压缩ZIP格式
转自:http://blog.csdn.net/linux__kernel/article/details/8271326 很多人在Google上不停的找合适自己的压缩,殊不知Py的压缩很不错.可以试 ...
- 转载:百为STM32开发板教程之十二——NAND FLASH
http://bbs.21ic.com/icview-586200-1-1.html 百为STM32开发板教程之十二——NAND FLASH 参考资料:百为stm32开发板光盘V3\百为stm32开发 ...
- STM32F4 DMA2D_M2M_PFC
此例程为STM324x9I_EVAL:DCMI_CaptureMode,使用的stm32f4xx_hal_driver, At each camera line event, the line is ...
- javascript使用正则表达式,从字符串提取内容,多数组解析
JavaScript有两种方式创建一个正则表达式: 第一种方式是直接通过/正则表达式/写出来,第二种方式是通过new RegExp('正则表达式')创建一个RegExp对象. 如: var re1 = ...
- bzoj 4568: [Scoi2016]幸运数字【树链剖分+线段树+线性基】
一眼做法,好处是好想好写坏处是常数大,容易被卡(bzoj loj 洛谷开O2 能AC,不开有90分-- 大概就是树剖之后维护线段树,在线段树的每个节点上上维护一个线性基,暴力\( 60^2 \)的合并 ...
- codeforces 1006 F(折半搜索)
F. Xor-Paths time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...
- XML(php中获取xml文件的方式/ajax获取xml格式的响应数据的方式)
1.XML 格式规范: ① 必须有一个根元素 ② 不可有空格.不可以数字或.开头.大小写敏感 ③ 不可交叉嵌套 ④ 属性双引号(浏览器自动修正成双引号了) ⑤ 特殊符号要使用实体 ⑥ 注释和HTML一 ...