noip模拟赛 圆桌游戏
【问题描述】
有一种圆桌游戏是这样进行的:n个人围着圆桌坐成一圈,按顺时针顺序依次标号为1号至n号。对1<i<n的i来说,i号的左边是i+1号,右边是i-1号。1号的右边是n号,n号的左边是1号。每一轮游戏时,主持人指定一个还坐在桌边的人(假设是i号),让他向坐在他左边的人(假设是j号)发起挑战,如果挑战成功,那么j离开圆桌,如果挑战失败,那么i离开圆桌。当圆桌边只剩下一个人时,这个人就是最终的胜利者。
事实上,胜利者的归属是与主持人的选择息息相关的。现在,你来担任圆桌游戏的主持人,并且你已经事先知道了对于任意两个人i号和j号,如果i向j发起挑战,结果是成功还是失败。现在你想知道,如果你可以随意指定每轮发起挑战的人,哪些人可以成为最终的胜利者?
【输入】
第一行包含一个整数n,表示参加游戏的人数;
接下来n行,每行包含n个数,每个数都是0或1中的一个,若第i行第j个数是1,表示i向j发起挑战的结果是成功,否则表示挑战结果是失败。第i行第i列的值一定为0。
【输出】
一行,包含若干个数,表示可能成为最终胜利者的玩家的标号。标号按从小到大的顺序输出,相邻两个数间用1个空格隔开。
【输入输出样例1】
game.in
3
0 1 0
0 0 1
0 1 0
game.out
1 3
【输入输出样例1说明】
先指定2号向3号发起挑战,3号离开;再指定1号向2号发起挑战,2号离开。此时1号是最终胜利者。
先指定1号向2号发起挑战,2号离开;再指定1号向3号发起挑战,1号离开。此时3号是最终胜利者。
无论如何安排挑战顺序,2号都无法成为最终胜利者。
【数据规模与约定】
对于30%的数据,n≤7
对于100%的数据,n≤100
分析:我一开始一直以为这道题是一道图论题,万万没想到竟然是dp题??先破环成链,接下来考虑怎么设计状态.状态不能表示最后活下来的是谁,因为这不是很好转移,那么将答案放到状态的定义中,判断可行性.由于破环成链,n<=100,最后的复杂度肯定是O(n^3),对应的dp解法就是区间dp喽.本来状态设计为f[i][j]表示i到j中最后存活的是谁,等价转换一下,可以变成f[i][j][k]表示i到j中k最后存活可不可以.这样的复杂度就是O(n^4)了,因为有3维了,考虑怎么省掉一维.最后是只有一个人存活下来了,因为是破环成链了,所以可以转化为第i与第i+n个人相邻,也就是相当于最后两个相同的人合并到一起了,那么状态可以设计为f[i][j]表示i与j是否能够相邻,枚举i,j的中间点k,如果f[i][k] && f[k][j],这时只要k能出局就好了.如果i能打败k或者k不能打败j就f[i][j] = 1,至此,这道题就做完了.
做完这道题不禁让我想起了几个哲学问题:为什么是区间dp?状态为什么要这么设计?为什么第i个人和第i+n个人可以站在一起?其实最主要的还是遇到环要破环成链这一步,结合数据范围还是有可能想到解法的,真是奇妙的一题.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int a[][], n, f[][]; int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
{
scanf("%d", &a[i][j]);
a[i + n][j + n] = a[i + n][j] = a[i][j + n] = a[i][j];
}
for (int i = ; i <= n * - ; i++)
f[i][i + ] = ;
for (int len = ; len <= * n; len++)
for (int i = ; i + len - <= * n; i++)
{
int j = i + len - ;
for (int k = i + ; k <= j - ; k++)
if (f[i][k] && f[k][j])
{
if (a[i][k] || !a[k][j])
f[i][j] = ;
}
}
for (int i = ; i <= n; i++)
if (f[i][i + n])
printf("%d ", i); return ;
}
noip模拟赛 圆桌游戏的更多相关文章
- CH Round #52 - Thinking Bear #1 (NOIP模拟赛)
A.拆地毯 题目:http://www.contesthunter.org/contest/CH%20Round%20%2352%20-%20Thinking%20Bear%20%231%20(NOI ...
- 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程
数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...
- 【noip模拟赛4】Matrix67的派对 暴力dfs
[noip模拟赛4]Matrix67的派对 描述 Matrix67发现身高接近的人似乎更合得来.Matrix67举办的派对共有N(1<=N<=10)个人参加,Matrix67需要把他们 ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- 2016-06-19 NOIP模拟赛
2016-06-19 NOIP模拟赛 by coolyangzc 共3道题目,时间3小时 题目名 高级打字机 不等数列 经营与开发 源文件 type.cpp/c/pas num.cpp/c ...
- NOIP模拟赛 篮球比赛2
篮球比赛2(basketball2.*) 由于Czhou举行了众多noip模拟赛,也导致放学后篮球比赛次数急剧增加.神牛们身体素质突飞猛进,并且球技不断精进.这引起了体育老师彩哥的注意,为了给校篮球队 ...
- NOIP模拟赛20161022
NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...
- contesthunter暑假NOIP模拟赛第一场题解
contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...
- NOIP模拟赛 by hzwer
2015年10月04日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...
随机推荐
- 数据结构之顺序队列(C实现)
一.队列是什么 队列是一种可以实现“先进先出”的存储结构. 队列通常可以分为两种类型: 一.顺序队列,采用顺序存储,当长度确定时使用. 顺序队列又有两种情况: ①使用数组存储队列的称为静态顺序队列. ...
- 2017青岛网络赛1008 Chinese Zodiac
Chinese Zodiac Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) T ...
- Hacker News的热门排名算法(转)
Hacker News 是一家关于计算机黑客和创业公司的社会化新闻网站,由 Paul Graham 的创业孵化器 Y Combinator 创建.与其它社会化新闻网站不同的是 Hacker News ...
- CF817A Treasure Hunt
思路: 起点(x1, y1),终点(x2, y2),步长(dx, -dy),(dx, dy),(-dx, -dy),(-dx, dy).只要满足abs(x1 - x2) % dx == 0 并且 ab ...
- C++学习笔记(二)之数组
数组作形参时,实际传入数组首地址 void print(const int*) void print(const int []) ]) 三种方法等价
- 【转】jvm类加载
类加载机制 JVM把class文件加载的内存,并对数据进行校验.转换解析和初始化,最终形成JVM可以直接使用的Java类型的过程就是加载机制. 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的生命 ...
- PHP开发心得二
如何解决错误:PHP SOAP Fatal error: Uncaught SoapFault exception: [Client] looks like we got no XML documen ...
- 求助:可以使用任何编程工具做成一个控件或组件,使得在VB中能调用并得到摄像头的参数及图片。
请看下网址上的这个问题,看是否有解决的方式http://www.educity.cn/wenda/338634.html
- karma+requirejs+angular 测试
http://karma-runner.github.io/0.8/plus/RequireJS.html karma 不是测试框架,只是一个运行测试框架的服务器 karma测试的原理是,将所有的文件 ...
- 【译】x86程序员手册22-6.4页级保护
6.4 Page-Level Protection 页级保护 Two kinds of protection are related to pages: 与页相关的保护有两类: Restriction ...