BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

Description

曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加
强大的粒子流的神秘装置。超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升。它有三个参数n,k。它会
向编号为0到k的位置发射威力为C(n,k) mod 2333的粒子流。现在SHTSC给出了他的超能粒子炮·改的参数,让你求
其发射的粒子流的威力之和模2333。

Input

第一行一个整数t。表示数据组数。
之后t行,每行二个整数n,k。含义如题面描述。
k<=n<=10^18,t<=10^5

Output

t行每行一个整数,表示其粒子流的威力之和模2333的值。

Sample Input

1
5 5

Sample Output

32

 
$f(n,k)=\sum\limits_{i=0}^{k}C(n,i)$
$=\sum\limits_{i=0}^{k} C(n$%$p,i$%$p)\times C(n/p,i/p)$
设$a=\lfloor k/p \rfloor ,b=k$%$p$
$=\sum\limits_{i=0}^{ap-1}C(n$%$p,i$%$p)\times C(n/p,i/p)+\sum\limits_{i=ap}^{ap+b}C(n$%$p,i$%$p)\times C(n/p,i/p)$
$=\sum\limits_{i=0}^{p-1}C(n$%$p,i)\times \sum\limits_{i=0}^{a-1}C(n/p,i)+C(n/p,a)\times \sum\limits_{i=0}^{b}C(n$%$p,b)$
$=f(n$%$p,p-1)* f(n/p,a-1)+C(n/p,a)* f(n$%$p,b)$
递归求解即可。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 2550
typedef long long ll;
const int mod=2333;
int c[N][N],f[N][N];
void init() {
int i,j;
for(i=0;i<=mod;i++) c[i][0]=f[i][0]=1;
for(i=0;i<=mod;i++) {
for(j=1;j<=i;j++) {
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
f[i][j]=(f[i][j-1]+c[i][j])%mod;
}
for(j=i+1;j<=mod;j++) f[i][j]=f[i][j-1];
}
}
int Lucas(ll n,ll m) {
if(n<m) return 0;
if(n<mod&&m<mod) return c[n][m];
return Lucas(n/mod,m/mod)*Lucas(n%mod,m%mod)%mod;
}
int solve(ll n,ll k) {
ll a=k/mod;int b=k%mod;
if(k<mod) return f[n%mod][k];
return (solve(n%mod,mod-1)*solve(n/mod,a-1)%mod+Lucas(n/mod,a)*solve(n%mod,b)%mod)%mod;
}
int main() {
init();
int T;
scanf("%d",&T);
ll n,k;
while(T--) {
scanf("%lld%lld",&n,&k);
printf("%d\n",solve(n,k));
}
}
 

BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理的更多相关文章

  1. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  2. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  3. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  4. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  5. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  8. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  9. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

随机推荐

  1. BZOJ4373 算术天才与等差数列 题解

    题目大意: 一个长度为n的序列,其中第i个数为a[i].修改一个点的值询问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列. 思路: 1.一段区间符合要求满足:(1)区间中的max-min ...

  2. HDU 4578 线段树复杂题

    题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...

  3. MTK andorid从底层到上层添加驱动

    1 [编写linux驱动程序] 1.1 一.编写驱动核心程序 1.2 二.配置Kconfig 1.3 三.配置Makefile 1.4 四.配置系统的autoconfig 1.5 五.编译 2 [编写 ...

  4. tomcat并发数

    Tomcat的最大并发数是可以配置的,实际运用中,最大并发数与硬件性能和CPU数量都有很大关系的.更好的硬件,更多的处理器都会使Tomcat支持更多的并发. Tomcat默认的HTTP实现是采用阻塞式 ...

  5. 混合APP开发框架资料汇总

    Ionic(ionicframework)一款接近原生的Html5移动App开发框架 会html css js就可以开发app,Ionic基于angualrjs框架是一个专注于开发移动wap以及app ...

  6. Visual Studio 2017 RC的坑

    ASP.NET Core Project add Docker Project Support的问题 执行上面操作以后,如果本机没有装好docker,就会一直报错,无法build通过,无论你在Proj ...

  7. IO与文件读写---Java的IO流架构

    http://www.blogjava.net/pengpenglin/archive/2010/03/03/314239.html#314399 http://www.blogjava.net/jo ...

  8. android手机rootROM下载地址

    https://download.mokeedev.com/ https://download.lineageos.org/

  9. 深信服:Weblogic集群负载均衡技术解决方案

      深信服应用交付产品替换集群中的Master节点,以双机模式部署接入,为Cluster 内的服务器提供应用交换服务,结合健康检查和业务特点,提供十几种负载均衡算法组合,满足多种生产环境下的业务需求. ...

  10. kvm虚拟化学习笔记(二)之linux kvm虚拟机安装

    KVM虚拟化学习笔记系列文章列表----------------------------------------kvm虚拟化学习笔记(一)之kvm虚拟化环境安装http://koumm.blog.51 ...