Taxi Cab Scheme

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 231    Accepted Submission(s): 142

Problem Description
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible, there is also a need to schedule all the taxi rides which have been booked in advance. Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.

For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a − c| + |b − d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest , at least one minute before the new ride’s scheduled departure. Note that some rides may end after midnight.

 
Input
On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.
 
Output
For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.
 
Sample Input
2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11
 
Sample Output
1
2
 
题意:就是用少的出租车接送所有的预定的客人 距离时间公式已经给好了 
最小路径覆盖问题 具体自己去学习匈牙利算法就好了 这道题几乎是匈牙利算法的裸题 DFS实现 最小路径覆盖数 = 顶点数 - 最大匹配数
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int maxn = + ;
vector<int> gra[maxn];
struct Point{
int x, y;
};
struct Node{
int st, en;
Point p1, p2;
}node[maxn];
bool mark[maxn];
int xx[maxn], yy[maxn];
int m; inline int getTime(Point a, Point b);
int dfs(int u);
int maxMatch(); int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &m);
for(int i = ; i <= m; ++i){
gra[i].clear();
} int hour, mi;
for(int i = ; i <= m; ++i){
scanf("%d:%d %d %d %d %d", &hour, &mi, &node[i].p1.x, &node[i].p1.y, &node[i].p2.x, &node[i].p2.y);
node[i].st = hour * + mi;
node[i].en = node[i].st + getTime(node[i].p1, node[i].p2);
} for(int i = ; i <= m; ++i){
for(int j = i+; j <= m; ++j){
if(node[i].en + getTime(node[i].p2, node[j].p1) < node[j].st){
gra[i].push_back(j);
}
}
} int ans = maxMatch();
printf("%d\n", m-ans);
}
return ;
} inline int getTime(Point a, Point b){
return abs(a.x-b.x) + abs(a.y-b.y);
} int maxMatch(){
int res = ;
memset(xx, -, sizeof(xx));
memset(yy, -, sizeof(yy)); for(int i = ; i <= m; ++i){
if(xx[i] == -){
memset(mark, false, sizeof(mark));
res += dfs(i);
}
} return res;
} int dfs(int u){
for(int i = ; i < (int)gra[u].size(); ++i){
int v = gra[u][i];
if(!mark[v]){
mark[v] = true;
if(yy[v] == - || dfs(yy[v])){
yy[v] = u;
xx[u] = v;
return ;
}
}
}
return ;
}

【HDU1960】Taxi Cab Scheme(最小路径覆盖)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  3. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  4. hdu1350Taxi Cab Scheme (最小路径覆盖)

    Taxi Cab Scheme Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  6. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  7. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  8. Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

    Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...

  9. UVAlive3126 Taxi Cab Scheme(DAG的最小路径覆盖)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32568 [思路] DAG的最小路径覆盖. 将每个人看做一个结点,如 ...

随机推荐

  1. C# Tostring格式

    开发中经常用到格式化,不管是时间.货币.数字都可以随心所欲.也许你用的是{0:C}方式,也许你用String.Format方式,也许你用.ToString("n"),都是格式化的方 ...

  2. LeetCode Rotate List

    struct ListNode { int val; ListNode *next; ListNode(int x) : val(x), next(NULL) {} }; class Solution ...

  3. JAVA中管道通讯(线程间通讯)例子

    Java I/O系统是建立在数据流概念之上的,而在UNIX/Linux中有一个类似的概念,就是管道,它具有将一个程序的输出当作另一个程序的输入的能力.在Java中,可以使用管道流进行线程之间的通信,输 ...

  4. iOS开发:保持程序在后台长时间运行

    iOS开发:保持程序在后台长时间运行 2014 年 5 月 26 日 / NIVALXER / 0 COMMENTS iOS为了让设备尽量省电,减少不必要的开销,保持系统流畅,因而对后台机制采用墓碑式 ...

  5. Java收藏

    1.某大神的cnblogs博客关于java的随笔分类:http://www.cnblogs.com/viviman/category/444566.html 2.某大神的cnblogs博客关于java ...

  6. cocos2d-x创建项目

    2.0之后的创建项目方法 第一步,首先 cd cocos2d-x-2.2.1/tools/project-creator/ 第二步, ./create_project.py -project Hell ...

  7. 微信公众账号 Senparc.Weixin.MP SDK 开发教程 索引

    Senparc.Weixin.MP SDK从一开始就坚持开源的状态,这个过程中得到了许多朋友的认可和支持. 目前SDK已经达到比较稳定的版本,这个过程中我觉得有必要整理一些思路和经验,和大家一起分享. ...

  8. TransactionScope 使用记录

    最近使用TransactionScope来进行处理不同数据库的操作问题,当看到这里的时候肯都是在使用或者要使用的吧,关于他的使用网络上一大堆,我在使用的时候遇到了一下的问题,作为记录,可能会对以后使用 ...

  9. 从log中分析Android wif连接状态的方法

    1.这里是从log中通过搜索关键字wpa_supplicant: wlan0: State过滤之后的log: Line 1: 11-25 20:10:14.968120  1104  1104 D w ...

  10. OJ-Triangle

    这是Leet Code OJ上面的一道题,关于求从上到下的最小路径. 这是原题链接:https://leetcode.com/problems/triangle/ Given a triangle, ...