Taxi Cab Scheme

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 231    Accepted Submission(s): 142

Problem Description
Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible, there is also a need to schedule all the taxi rides which have been booked in advance. Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides.

For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a − c| + |b − d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest , at least one minute before the new ride’s scheduled departure. Note that some rides may end after midnight.

 
Input
On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.
 
Output
For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.
 
Sample Input
2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11
 
Sample Output
1
2
 
题意:就是用少的出租车接送所有的预定的客人 距离时间公式已经给好了 
最小路径覆盖问题 具体自己去学习匈牙利算法就好了 这道题几乎是匈牙利算法的裸题 DFS实现 最小路径覆盖数 = 顶点数 - 最大匹配数
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int maxn = + ;
vector<int> gra[maxn];
struct Point{
int x, y;
};
struct Node{
int st, en;
Point p1, p2;
}node[maxn];
bool mark[maxn];
int xx[maxn], yy[maxn];
int m; inline int getTime(Point a, Point b);
int dfs(int u);
int maxMatch(); int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &m);
for(int i = ; i <= m; ++i){
gra[i].clear();
} int hour, mi;
for(int i = ; i <= m; ++i){
scanf("%d:%d %d %d %d %d", &hour, &mi, &node[i].p1.x, &node[i].p1.y, &node[i].p2.x, &node[i].p2.y);
node[i].st = hour * + mi;
node[i].en = node[i].st + getTime(node[i].p1, node[i].p2);
} for(int i = ; i <= m; ++i){
for(int j = i+; j <= m; ++j){
if(node[i].en + getTime(node[i].p2, node[j].p1) < node[j].st){
gra[i].push_back(j);
}
}
} int ans = maxMatch();
printf("%d\n", m-ans);
}
return ;
} inline int getTime(Point a, Point b){
return abs(a.x-b.x) + abs(a.y-b.y);
} int maxMatch(){
int res = ;
memset(xx, -, sizeof(xx));
memset(yy, -, sizeof(yy)); for(int i = ; i <= m; ++i){
if(xx[i] == -){
memset(mark, false, sizeof(mark));
res += dfs(i);
}
} return res;
} int dfs(int u){
for(int i = ; i < (int)gra[u].size(); ++i){
int v = gra[u][i];
if(!mark[v]){
mark[v] = true;
if(yy[v] == - || dfs(yy[v])){
yy[v] = u;
xx[u] = v;
return ;
}
}
}
return ;
}

【HDU1960】Taxi Cab Scheme(最小路径覆盖)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  3. UVALive3126 Taxi Cab Scheme —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/UVALive-3126 题解: 最小路径覆盖:即在图中找出尽量少的路径,使得每个结点恰好只存在于一条路径上.其中单独一个点也可以是一条 ...

  4. hdu1350Taxi Cab Scheme (最小路径覆盖)

    Taxi Cab Scheme Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  6. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  7. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  8. Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

    Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...

  9. UVAlive3126 Taxi Cab Scheme(DAG的最小路径覆盖)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=32568 [思路] DAG的最小路径覆盖. 将每个人看做一个结点,如 ...

随机推荐

  1. asp.net DataTable 修改列值

    /// <summary> /// 修改数据表DataTable某一列的类型和记录值(正确步骤:1.克隆表结构,2.修改列类型,3.修改记录值,4.返回结果) /// </summa ...

  2. linux下系统编程C环境搭建

    一.系统安装 我使用的是VMware8下的ubuntu12.04,这是培训老师说的,12.04相对来说,比较新,而且是5年长期支持版,不容易过时.对于系统的安装,我不想说很多,只是希望大家主义这几点: ...

  3. Unity3D 一个较常见的错误信息“rect[2] == rt->GetGLWidth() && rect[3] == rt->GetGLHeight()”

    rect[2] == rt->GetGLWidth() && rect[3] == rt->GetGLHeight() 这个错误信息的具体含义我还不太清楚.它出现以后会不停 ...

  4. Spark的Straggler深入学习(2):思考Block和Partition的划分问题——以论文为参考

    一.partition的划分问题 如何划分partition对block数据的收集有很大影响.如果需要根据block来加速task的执行,partition应该满足什么条件? 参考思路1:range ...

  5. Node相关参考资料

    参考资料: [玩转Nodejs日志管理log4js]http://blog.fens.me/nodejs-log4js/ [dependencies与devDependencies之间的区别]http ...

  6. SQL列最大重复项

    SELECT 1 AS co1, 'a' AS co2 INTO #a UNION SELECT 2, 'a' UNION SELECT 11,'a' UNION SELECT 12, 'a' UNI ...

  7. nosql->redis学习 数据类型

    redis->string 二进制 setnx name lijie  判断键值 是否存在  如果存在返回0 不存在 吧值设置进去   setex  指定键值有效期时间  setex name ...

  8. SP Flash Tool使用异常集锦

    1.The load scatter file is invalid无法载入scatter文件 (ubuntu下)我如果我们在使用MTK的Smart Phone Flash Tool过程中无法载入Sc ...

  9. IOS 关于NSString类型的属性为什么有时用copy,有时用strong呢?

    对于很多初学者,发现在修饰NSString类型的对象时,会有这样的疑惑?怎么有些人用strong修饰,而有些人用copy修饰呢? 这里有个例子,一.首先声明2个属性: @property (nonat ...

  10. 快速上手RaphaelJS--Instant RaphaelJS Starter翻译(三)

    (目前发现一些文章被盗用的情况,我们将在每篇文章前面添加原文地址,本文源地址:http://www.cnblogs.com/idealer3d/p/Instant_RaphaelJS_Starter3 ...