[OpenCV] Samples 02: [ML] kmeans
前言
一、简介
Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage。
相比之下Mat最大的好处就是能够更加方便的进行内存管理,不再需要程序员手动管理内存的释放。
opencv2.3中提到Mat是一个多维的密集数据数组,可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。
/* implement */
基本操作
操作Mat元素时:I.at<double>(1,1) = CV_PI;
本博客原内容
/*
*
* cvout_sample just demonstrates the serial out capabilities of cv::Mat
* That is, cv::Mat M(...); cout << M; Now works.
*
*/ #include "opencv2/core/core.hpp"
#include <iostream> using namespace std;
using namespace cv; static void help()
{
cout
<< "\n------------------------------------------------------------------\n"
<< " This program shows the serial out capabilities of cv::Mat\n"
<< "That is, cv::Mat M(...); cout << M; Now works.\n"
<< "Output can be formated to OpenCV, matlab, python, numpy, csv and \n"
<< "C styles Usage:\n"
<< "./cvout_sample\n"
<< "------------------------------------------------------------------\n\n"
<< endl;
} int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv, "{help h||}");
if (parser.has("help"))
{
help();
return ;
} /**************************************************************************/
// Jeff --> Define Diagnal Mat.
Mat I = Mat::eye(, , CV_64F);
I.at<double>(,) = CV_PI;
cout << "I = \n" << I << ";" << endl << endl; /*------------------------------------------------------------------------*/
Mat r = Mat(, , CV_8UC3);
randu(r, Scalar::all(), Scalar::all()); // Jeff --> Matrix Format transform.
cout << "r (default) = \n" << r << ";" << endl << endl;
cout << "r (matlab) = \n" << format(r, Formatter::FMT_MATLAB) << ";" << endl << endl;
cout << "r (python) = \n" << format(r, Formatter::FMT_PYTHON) << ";" << endl << endl;
cout << "r (numpy) = \n" << format(r, Formatter::FMT_NUMPY) << ";" << endl << endl;
cout << "r (csv) = \n" << format(r, Formatter::FMT_CSV) << ";" << endl << endl;
cout << "r (c) = \n" << format(r, Formatter::FMT_C) << ";" << endl << endl; /**************************************************************************/
Point2f p(, );
cout << "p = " << p << ";" << endl; /*------------------------------------------------------------------------*/
Point3f p3f(, , );
cout << "p3f = " << p3f << ";" << endl; /**************************************************************************/
// Jeff --> vector.
vector<float> v;
v.push_back(1.1);
v.push_back(2.2);
v.push_back(3.3); cout << "shortvec = " << Mat(v) << endl; /*------------------------------------------------------------------------*/
vector<Point2f> points();
for (size_t i = ; i < points.size(); ++i)
points[i] = Point2f((float)(i * ), (float)(i % )); cout << "points = " << points << ";" << endl;
return ;
}
Result: Matrix Format for不同的工具。
r (default) =
[ 91, 2, 79, 179, 52, 205, 236, 8, 181;
239, 26, 248, 207, 218, 45, 183, 158, 101;
102, 18, 118, 68, 210, 139, 198, 207, 211;
181, 162, 197, 191, 196, 40, 7, 243, 230;
45, 6, 48, 173, 242, 125, 175, 90, 63;
90, 22, 112, 221, 167, 224, 113, 208, 123;
214, 35, 229, 6, 143, 138, 98, 81, 118;
187, 167, 140, 218, 178, 23, 43, 133, 154;
150, 76, 101, 8, 38, 238, 84, 47, 7;
117, 246, 163, 237, 69, 129, 60, 101, 41]; r (matlab) =
(:, :, 1) =
91, 179, 236;
239, 207, 183;
102, 68, 198;
181, 191, 7;
45, 173, 175;
90, 221, 113;
214, 6, 98;
187, 218, 43;
150, 8, 84;
117, 237, 60
(:, :, 2) =
2, 52, 8;
26, 218, 158;
18, 210, 207;
162, 196, 243;
6, 242, 90;
22, 167, 208;
35, 143, 81;
167, 178, 133;
76, 38, 47;
246, 69, 101
(:, :, 3) =
79, 205, 181;
248, 45, 101;
118, 139, 211;
197, 40, 230;
48, 125, 63;
112, 224, 123;
229, 138, 118;
140, 23, 154;
101, 238, 7;
163, 129, 41; r (python) =
[[[ 91, 2, 79], [179, 52, 205], [236, 8, 181]],
[[239, 26, 248], [207, 218, 45], [183, 158, 101]],
[[102, 18, 118], [ 68, 210, 139], [198, 207, 211]],
[[181, 162, 197], [191, 196, 40], [ 7, 243, 230]],
[[ 45, 6, 48], [173, 242, 125], [175, 90, 63]],
[[ 90, 22, 112], [221, 167, 224], [113, 208, 123]],
[[214, 35, 229], [ 6, 143, 138], [ 98, 81, 118]],
[[187, 167, 140], [218, 178, 23], [ 43, 133, 154]],
[[150, 76, 101], [ 8, 38, 238], [ 84, 47, 7]],
[[117, 246, 163], [237, 69, 129], [ 60, 101, 41]]]; r (numpy) =
array([[[ 91, 2, 79], [179, 52, 205], [236, 8, 181]],
[[239, 26, 248], [207, 218, 45], [183, 158, 101]],
[[102, 18, 118], [ 68, 210, 139], [198, 207, 211]],
[[181, 162, 197], [191, 196, 40], [ 7, 243, 230]],
[[ 45, 6, 48], [173, 242, 125], [175, 90, 63]],
[[ 90, 22, 112], [221, 167, 224], [113, 208, 123]],
[[214, 35, 229], [ 6, 143, 138], [ 98, 81, 118]],
[[187, 167, 140], [218, 178, 23], [ 43, 133, 154]],
[[150, 76, 101], [ 8, 38, 238], [ 84, 47, 7]],
[[117, 246, 163], [237, 69, 129], [ 60, 101, 41]]], dtype='uint8'); r (csv) =
91, 2, 79, 179, 52, 205, 236, 8, 181
239, 26, 248, 207, 218, 45, 183, 158, 101
102, 18, 118, 68, 210, 139, 198, 207, 211
181, 162, 197, 191, 196, 40, 7, 243, 230
45, 6, 48, 173, 242, 125, 175, 90, 63
90, 22, 112, 221, 167, 224, 113, 208, 123
214, 35, 229, 6, 143, 138, 98, 81, 118
187, 167, 140, 218, 178, 23, 43, 133, 154
150, 76, 101, 8, 38, 238, 84, 47, 7
117, 246, 163, 237, 69, 129, 60, 101, 41
; r (c) =
{ 91, 2, 79, 179, 52, 205, 236, 8, 181,
239, 26, 248, 207, 218, 45, 183, 158, 101,
102, 18, 118, 68, 210, 139, 198, 207, 211,
181, 162, 197, 191, 196, 40, 7, 243, 230,
45, 6, 48, 173, 242, 125, 175, 90, 63,
90, 22, 112, 221, 167, 224, 113, 208, 123,
214, 35, 229, 6, 143, 138, 98, 81, 118,
187, 167, 140, 218, 178, 23, 43, 133, 154,
150, 76, 101, 8, 38, 238, 84, 47, 7,
117, 246, 163, 237, 69, 129, 60, 101, 41};
[OpenCV] Samples 02: [ML] kmeans的更多相关文章
- [OpenCV] Samples 06: [ML] logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 02: Mat - 图像矩阵
前言 一.简介 Ref:IplImage, CvMat, Mat 的关系 Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage. 相比之下Ma ...
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- [OpenCV] Samples 03: kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. 一.像素聚类 #include "opencv2/highgui.hpp" #include "open ...
- [OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 03: cout_mat
操作Mat元素时:I.at<double>(1,1) = CV_PI; /* * * cvout_sample just demonstrates the serial out capab ...
- OpenCV学习(23) 使用kmeans算法实现图像分割
本章我们用kmeans算法实现一个简单图像的分割.如下面的图像,我们知道图像分3个簇,背景.白色的任务,红色的丝带以及帽子. Mat img = cv::imread(&quo ...
- [OpenCV] Samples 13: opencv_version
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...
随机推荐
- [置顶]PADS PCB功能使用技巧系列之NO.004- 如何做到20H规则?
电源层与地层之间变化的电场在板边缘会向外辐射电磁干扰(EMI),称为边沿效应.20H规则可将70%的电场限制在接地层边沿内,100H可达到98%. (1)在Layout中,选择菜单栏Setup -&g ...
- 新装ubuntu12.04需要敲的命令集合
1.sudo cp /etc/apt/sources.list /etc/apt/sources.list.backup sudo gedit /etc/apt/sources.list copy: ...
- 运维自动化工具---Puppet
案例环境:-----------------------------------------------------------------主机 操作系统 IP地址 主要软件--------- ...
- MySQL数据库有外键约束时使用truncate命令的办法
MySQL数据库操作中,Delete与Truncate两个命令都可以删除一个数据表中的全部数据,使用办法分别是: DELETE FROM t_question TRUNCATE TABLE t_que ...
- 软件工程课设day3
下载昨日新版本程序,完成修复项目的测试. 与组内成员讨论,确认项目新模块功能“吐槽墙”的设计方向与实现形式——因为项目为便捷工具类,社区形式的实现方式与项目本质背道而驰.因此决定以“点击目标课程条目, ...
- 分布式系统一致性问题和Raft一致性算法
一致性问题 一致性算法是用来解决一致性问题的,那么什么是一致性问题呢? 在分布式系统中,一致性问题(consensus problem)是指对于一组服务器,给定一组操作,我们需要一个协议使得最后它们的 ...
- mongodb(分片)
分片(即sharding)是将数据拆分至不同数据节点的方式. 1.在mongoDB中提供了自动分片的方式,它会根据数据块(chunk)大小的设定,对片键进行拆分: 2.mongoDB配置分片,要配置三 ...
- node(md5)
md5是一种信息-摘要算法,即针对一段明文给出一个hash值,在密码学中最经典的用法是验证数据的完整性,因为一旦原始数据发生改变那么生成的摘要也必将不同. 网络中md5可以用于用户密码的加密,即在数据 ...
- 给Java程序猿们推荐一些值得一看的好书
学习的最好途径就是看书 "学习的最好途径就是看书",这是我自己学习并且小有了一定的积累之后的第一体会.个人认为看书有两点好处: 1.能出版出来的书一定是经过反复的思考.雕琢和审核的 ...
- Aoite 系列(03) - 一起来 Redis 吧!
Aoite 是一个适于任何 .Net Framework 4.0+ 项目的快速开发整体解决方案.Aoite.Data 适用于市面上大多数的数据库提供程序,通过统一封装,可以在日常开发中简单便捷的操作数 ...