前言


一、简介

Ref:IplImage, CvMat, Mat 的关系

Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage。

相比之下Mat最大的好处就是能够更加方便的进行内存管理,不再需要程序员手动管理内存的释放。

opencv2.3中提到Mat是一个多维的密集数据数组,可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。

/* implement */

基本操作


操作Mat元素时:I.at<double>(1,1) = CV_PI;

本博客原内容

/*
*
* cvout_sample just demonstrates the serial out capabilities of cv::Mat
* That is, cv::Mat M(...); cout << M; Now works.
*
*/ #include "opencv2/core/core.hpp"
#include <iostream> using namespace std;
using namespace cv; static void help()
{
cout
<< "\n------------------------------------------------------------------\n"
<< " This program shows the serial out capabilities of cv::Mat\n"
<< "That is, cv::Mat M(...); cout << M; Now works.\n"
<< "Output can be formated to OpenCV, matlab, python, numpy, csv and \n"
<< "C styles Usage:\n"
<< "./cvout_sample\n"
<< "------------------------------------------------------------------\n\n"
<< endl;
} int main(int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv, "{help h||}");
if (parser.has("help"))
{
help();
return ;
} /**************************************************************************/
// Jeff --> Define Diagnal Mat.
Mat I = Mat::eye(, , CV_64F);
I.at<double>(,) = CV_PI;
cout << "I = \n" << I << ";" << endl << endl; /*------------------------------------------------------------------------*/
Mat r = Mat(, , CV_8UC3);
randu(r, Scalar::all(), Scalar::all()); // Jeff --> Matrix Format transform.
cout << "r (default) = \n" << r << ";" << endl << endl;
cout << "r (matlab) = \n" << format(r, Formatter::FMT_MATLAB) << ";" << endl << endl;
cout << "r (python) = \n" << format(r, Formatter::FMT_PYTHON) << ";" << endl << endl;
cout << "r (numpy) = \n" << format(r, Formatter::FMT_NUMPY) << ";" << endl << endl;
cout << "r (csv) = \n" << format(r, Formatter::FMT_CSV) << ";" << endl << endl;
cout << "r (c) = \n" << format(r, Formatter::FMT_C) << ";" << endl << endl; /**************************************************************************/
Point2f p(, );
cout << "p = " << p << ";" << endl; /*------------------------------------------------------------------------*/
Point3f p3f(, , );
cout << "p3f = " << p3f << ";" << endl; /**************************************************************************/
// Jeff --> vector.
vector<float> v;
v.push_back(1.1);
v.push_back(2.2);
v.push_back(3.3); cout << "shortvec = " << Mat(v) << endl; /*------------------------------------------------------------------------*/
vector<Point2f> points();
for (size_t i = ; i < points.size(); ++i)
points[i] = Point2f((float)(i * ), (float)(i % )); cout << "points = " << points << ";" << endl;
return ;
}


Result
: Matrix Format for不同的工具。

r (default) =
[ 91, 2, 79, 179, 52, 205, 236, 8, 181;
239, 26, 248, 207, 218, 45, 183, 158, 101;
102, 18, 118, 68, 210, 139, 198, 207, 211;
181, 162, 197, 191, 196, 40, 7, 243, 230;
45, 6, 48, 173, 242, 125, 175, 90, 63;
90, 22, 112, 221, 167, 224, 113, 208, 123;
214, 35, 229, 6, 143, 138, 98, 81, 118;
187, 167, 140, 218, 178, 23, 43, 133, 154;
150, 76, 101, 8, 38, 238, 84, 47, 7;
117, 246, 163, 237, 69, 129, 60, 101, 41]; r (matlab) =
(:, :, 1) =
91, 179, 236;
239, 207, 183;
102, 68, 198;
181, 191, 7;
45, 173, 175;
90, 221, 113;
214, 6, 98;
187, 218, 43;
150, 8, 84;
117, 237, 60
(:, :, 2) =
2, 52, 8;
26, 218, 158;
18, 210, 207;
162, 196, 243;
6, 242, 90;
22, 167, 208;
35, 143, 81;
167, 178, 133;
76, 38, 47;
246, 69, 101
(:, :, 3) =
79, 205, 181;
248, 45, 101;
118, 139, 211;
197, 40, 230;
48, 125, 63;
112, 224, 123;
229, 138, 118;
140, 23, 154;
101, 238, 7;
163, 129, 41; r (python) =
[[[ 91, 2, 79], [179, 52, 205], [236, 8, 181]],
[[239, 26, 248], [207, 218, 45], [183, 158, 101]],
[[102, 18, 118], [ 68, 210, 139], [198, 207, 211]],
[[181, 162, 197], [191, 196, 40], [ 7, 243, 230]],
[[ 45, 6, 48], [173, 242, 125], [175, 90, 63]],
[[ 90, 22, 112], [221, 167, 224], [113, 208, 123]],
[[214, 35, 229], [ 6, 143, 138], [ 98, 81, 118]],
[[187, 167, 140], [218, 178, 23], [ 43, 133, 154]],
[[150, 76, 101], [ 8, 38, 238], [ 84, 47, 7]],
[[117, 246, 163], [237, 69, 129], [ 60, 101, 41]]]; r (numpy) =
array([[[ 91, 2, 79], [179, 52, 205], [236, 8, 181]],
[[239, 26, 248], [207, 218, 45], [183, 158, 101]],
[[102, 18, 118], [ 68, 210, 139], [198, 207, 211]],
[[181, 162, 197], [191, 196, 40], [ 7, 243, 230]],
[[ 45, 6, 48], [173, 242, 125], [175, 90, 63]],
[[ 90, 22, 112], [221, 167, 224], [113, 208, 123]],
[[214, 35, 229], [ 6, 143, 138], [ 98, 81, 118]],
[[187, 167, 140], [218, 178, 23], [ 43, 133, 154]],
[[150, 76, 101], [ 8, 38, 238], [ 84, 47, 7]],
[[117, 246, 163], [237, 69, 129], [ 60, 101, 41]]], dtype='uint8'); r (csv) =
91, 2, 79, 179, 52, 205, 236, 8, 181
239, 26, 248, 207, 218, 45, 183, 158, 101
102, 18, 118, 68, 210, 139, 198, 207, 211
181, 162, 197, 191, 196, 40, 7, 243, 230
45, 6, 48, 173, 242, 125, 175, 90, 63
90, 22, 112, 221, 167, 224, 113, 208, 123
214, 35, 229, 6, 143, 138, 98, 81, 118
187, 167, 140, 218, 178, 23, 43, 133, 154
150, 76, 101, 8, 38, 238, 84, 47, 7
117, 246, 163, 237, 69, 129, 60, 101, 41
; r (c) =
{ 91, 2, 79, 179, 52, 205, 236, 8, 181,
239, 26, 248, 207, 218, 45, 183, 158, 101,
102, 18, 118, 68, 210, 139, 198, 207, 211,
181, 162, 197, 191, 196, 40, 7, 243, 230,
45, 6, 48, 173, 242, 125, 175, 90, 63,
90, 22, 112, 221, 167, 224, 113, 208, 123,
214, 35, 229, 6, 143, 138, 98, 81, 118,
187, 167, 140, 218, 178, 23, 43, 133, 154,
150, 76, 101, 8, 38, 238, 84, 47, 7,
117, 246, 163, 237, 69, 129, 60, 101, 41};

  

[OpenCV] Samples 02: [ML] kmeans的更多相关文章

  1. [OpenCV] Samples 06: [ML] logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  2. [OpenCV] Samples 02: Mat - 图像矩阵

    前言 一.简介 Ref:IplImage, CvMat, Mat 的关系 Mat是opencv2.0推出的处理图像的新的数据结构,现在越来越有趋势取代之前的cvMat和lplImage. 相比之下Ma ...

  3. [OpenCV] Samples 10: imagelist_creator

    yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...

  4. [OpenCV] Samples 16: Decompose and Analyse RGB channels

    物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...

  5. [OpenCV] Samples 03: kmeans

    注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. 一.像素聚类 #include "opencv2/highgui.hpp" #include "open ...

  6. [OpenCV] Samples 06: logistic regression

    logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...

  7. [OpenCV] Samples 03: cout_mat

    操作Mat元素时:I.at<double>(1,1) = CV_PI; /* * * cvout_sample just demonstrates the serial out capab ...

  8. OpenCV学习(23) 使用kmeans算法实现图像分割

          本章我们用kmeans算法实现一个简单图像的分割.如下面的图像,我们知道图像分3个簇,背景.白色的任务,红色的丝带以及帽子.       Mat img = cv::imread(&quo ...

  9. [OpenCV] Samples 13: opencv_version

    cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...

随机推荐

  1. 《理解 ES6》阅读整理:函数(Functions)(八)Tail Call Optimization

    尾调用优化(Tail Call Optimization) 尾调用是指函数的最后一条语句是函数调用,比如下面的代码: function doSomething() { return doSomethi ...

  2. 2013-08-12【随笔2】-Roy

    最近总是因为一下小事情,就会变得闹心,就会自己胡思乱想,自己吓唬自己,自己给自己找烦恼. 是因为每天无所事事,日子过得没有了重点,然后每天人心惶惶,有点杞人忧天了. 还是因为这样平淡的日子,消磨了我们 ...

  3. html中使用js实现内容过长时部分

    有时数据内容太长时我们并不希望其全部显示出来,因为这样可能会导致用于显示这些内容的标签被撑开影响美观. 这时就希望能够实现默认只显示部分内容,在鼠标放上去的时候再将全部的内容显示出来. 这里提供一个简 ...

  4. HTTP笔记整理(1)

    今天开始学习http协议,把自己从网上整理,自己理解的部分先发出来,共勉! (PS笔者小白一枚,如有理解性的错误,请指正告知,为感!!!) 一.  HTTP协议概念 所谓的“协议”是指,计算机在通信网 ...

  5. highcharts 当Y轴全部没有数据的时候 数据标签显示最下面 而不是居中显示

    yAxis: {min: 0,minRange: 1}

  6. Dynamic CRM 2013学习笔记 系列汇总

    这里列出所有 Dynamic CRM 2013学习笔记 系列文章,方便大家查阅.有任何建议.意见.需要,欢迎大家提交评论一起讨论. 本文原文地址: Dynamic CRM 2013学习笔记 系列汇总 ...

  7. Hadoop日记Day18---MapReduce排序分组

    本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...

  8. 解读jQuery中extend函数

    $.extend.apply( null, [ true, { "a" : 1, "b" : 2 } ] );//console.log(window.a); ...

  9. python 模块加载

    python 模块加载 本文主要介绍python模块加载的过程. module的组成 所有的module都是由对象和对象之间的关系组成. type和object python中所有的东西都是对象,分为 ...

  10. shell 中命令输入的快!捷!键!

    非常棒!! 非常棒!! 删除ctrl + d 删除光标所在位置上的字符相当于VIM里x或者dlctrl + h 删除光标所在位置前的字符相当于VIM里hx或者dhctrl + k 删除光标后面所有字符 ...