0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016
地址:https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/
主要挑战是unsupervised learning 无监督学习,2016年大量的研究专注于generative models 生成模型。几大巨头谷歌和脸书分别创新于自然语言处理NLP。
无监督学习
无监督学习指的是在没有额外信息的新数据中,提取数据模式和结构。以往的经典解决办法是自动编码(autoencoders),主要包含多层感知机(multilayer perceptron MLP):输入和输出具有相同的大小,隐层训练用来覆盖输入。从隐层得到的输出能够用来聚类,降维,提高监督分类甚至是数据压缩。
对抗式网络generative adversarial Networks GANs
基于生成模型下的新方法:对抗式网络。它能够使模型处理成无监督学习。Yann LeCun认为对抗式网络将会是机器学习未来20年最重要的ideal
lan Goodfellow在2014年就已经提出了GANs这个概念,然而直到2016年才开始展现它真正的潜力。Deep Convolutional GAN结构能够提高训练技术和更好的结构水平。它能够调和原来神经网络的一些限制,稍后介绍的新应用也会有大幅度的灵活性提高。
The intuitive idea
GANs有两个网络模型,生成模型generator model G,判别模型discriminatory model D,G生成的结果意图混淆D,使其分不清楚是真实样本还是虚假样本。在GANs中,G 会生成输出,D来判断是否来自于同一个训练集。
G会产生一定的noise Z,D将会从数据集中获得输入D(x),从G中获得输入D(G(Z)),将其进行分类。D和G同时进行学习,一旦G训练成功,那么G就能产生和训练集有相似特性的新样本。新样本从细节中来看虽然不像原始训练集一样,但是仍然可以捕获到一些具体地方面能够使其看起来似乎来自图片集。
infoGAN
最近有关于GANs的一些设想已经不仅仅是近似数据分布问题,还有学习可翻译的有用处的数据代表向量。这就是信息对抗式网络。这些向量代表需要有丰富的信息,同时需要可理解。意味着我们可以区别从G模型产生的输出形状转换类型的部分向量。infoGANs模型是由八月的时候openAI研究者所提出来的,果壳中,infoGAN能够从无监督方式中产生数据集的具体信息。例如,应用在MNIST 数据集中的时候,在没有手动标记的数据中,能够推断出旋转数字的类型和产生样本的宽度。
conditional GANs
GANs的另一个扩展就是转换对抗式网络cGAN,这个模型所产生样本能够有额外信息(分类标签,内容,另一个图片),在使用这个模型能够强化G所产生的输出类型。这个模型已经应用在某些应用中了:
在图片添加文本内容:所产生的图片基于图片中的描述(用CNN或者LSTM来产生解码向量)所作为的额外信息。论文:Generative Adversarial Text to Image Synthesis (Jun 2016).
图片与图片之间的转换:将输入图片和输出图片进行相关映射。论文:Image-to-Image Translation with Conditional Adversarial Nets (Nov 2016).
超分辨率:从网上下载的不太清晰的图片,经过生成器的处理后尽量使得图片能够有比较自然的细节版本,论文:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (Nov 2016).
You can check more about generative models in this blog post or in this talk by Ian Goodfellow.
Natural Language Processing NLP
为了能够与机器进行流利地交流,首先需要解决以下问题:文本理解,问答,机器转换。
文本理解:JMT建立了一个单一模型,能够学习5大NLP任务。语音部分标记,分词,从属语法解析,语义相关性,文本蕴含。这个模型最大的魅力在于端到端可训练模式。意味着不同层之间可以进行合作,从而在底层任务中提高结果。这是一个突破点:利用高层能力提高底层结果。
问答:新应用模型:Dynamic Coattention Network(DCN)动态共注意网络。是选择在阅读text后再回答问题,还是先看问题再阅读text,如果选择A,则会详细注意text的每一个细节以防后面的问题、DCN做同样的事情,根据文档产生一系列代表问题并且试图做出解答,之后再可能的答案里进行收敛到最终答案。
机器翻译:九月份谷歌提出了一个新模型:Google neural machine translation GNMT,这个模型主要是训练语言翻译对象,比如说中文翻译至英文。能够启动zero-shot translation,零翻译即可以翻译一对并没有训练过的语言。
Community
机器学习技术能够有利于社区。openAI是一个创建于2015年,将学术与工厂结合的无利润组织。创办动机来源于希望将AI技术能够让更多人的受益,同时避免有AI超级力量的产生。另一个方面,Amazon,deepmind,google,facebook ,IBM,微软。在这个先进公共领域的理解中,需要有支持开放性平台进行讨论。
十大开源工具:
- TensorFlow by Google.
- Keras by François Chollet.
- CNTK by Microsoft.
- MXNET by Distributed (Deep) Machine Learning Community. Adapted by Amazon.
- Theano by Université de Montréal.
- Torch by Ronan Collobert, Koray Kavukcuoglu, Clement Farabet. Widely used by Facebook.
0.读书笔记之The major advancements in Deep Learning in 2016的更多相关文章
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
- [译]2016年深度学习的主要进展(译自:The Major Advancements in Deep Learning in 2016)
译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/ ...
- 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...
- 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- <玩转Django2.0>读书笔记:表单
1. 表单字段 参考: 官方文档 Django表单字段汇总 2. 表单代码示例(forms.Form) # form.py代码 # 获取数据库数据 choices_list = [(i+1,v['ty ...
- <玩转Django2.0>读书笔记:模板和模型
1. 模板内置标签 Django常用内置标签 标签 描述 {% for %} 遍历输出变量的内容 {% if %} 对变量进行条件判断 {% csrf_token %} 生成csrf_token标签, ...
- vue2.0读书笔记2-进阶
一.深入响应式原理 二.过渡效果 三.过渡状态 四.Render函数 五.自定义指令 六.混合 七.插件 八.单文件组件 九.生产环境 十.路由 vue-router: http://router.v ...
- <玩转Django2.0>读书笔记:邮件和分页
1. 发送邮件 # settings.py设置 # 邮箱设置 EMAIL_USE_SSL = True # 邮件服务器 EMAIL_HOST = 'smtp.qq.com' # 邮件服务端口 EMAI ...
- <玩转Django2.0>读书笔记:URL规则和视图
1. 带变量的URL #urls.py from django.urls import path from .view import * urlpatterns = [ path('',index_v ...
随机推荐
- Web 播放声音 — AMR(Audio) 篇
本文主要介绍 AMR(Aduio) 播放 AMR 格式 Base64码 音频. 1.必备资料 github AMR 开源库 :https://github.com/jpemartins/amr.js用 ...
- python之三层菜单递归
首先非常感谢11期的学长薜保库提供了一种非常实用函数递归方法,让实现三层菜单如此简单,不过对所遍历的嵌套字典或列表格式有所要求.有特定的环境下非常实用. 主要针对中国的各省市区进行展示,采用了百度的j ...
- lua 基础 1
--1.1 Chunks--[[Chunk 是一系列语句,Lua 执行的每一块语句,比如一个文件或者交互模式下的每一行都是一个 Chunk.]] -- 1.2 全局变量--[[ 全局变量不需要声明,给 ...
- 《C++ API设计》作者Martin Reddy访谈问题征集
Martin Reddy博士是软件行业的一名老兵,有着15年以上的从业经验,共撰写过40多篇论文,拥有3项软件专利,并与他人合著了Level of Detail for 3D Graphics.另外, ...
- 在VS中添加lib库的三种方法
注意: 1.每种方法也要复制相应的DLL文件到相应目录,或者设定DLL目录的位置,具体方法为:"Properties" -> "Configuration Prop ...
- 开发客户端软件时,出现System.Windows.Markup.XamlParseException错误
开发客户端软件时,出现System.Windows.Markup.XamlParseException错误,通过查看错误消息,发现TCPIP的一个COM组件在安装软件过程中被删除了,重新注册了一下TC ...
- 非本地跳转之setjmp与longjmp
非本地跳转(unlocal jump)是与本地跳转相对应的一个概念. 本地跳转主要指的是类似于goto语句的一系列应用,当设置了标志之后,可以跳到所在函数内部的标号上.然而,本地跳转不能将控制权转移到 ...
- 使用maven搭建SpringMVC项目环境
Window环境下用maven新建一个项目: mvn archetype:generate -DarchetypeCatalog=internal -DgroupId=cn-cisol -Dartif ...
- SQL 对时间的处理
--获取当前日期(如:yyyy-mm-dd)Select Datename(year,GetDate())+'-'+Datename(month,GetDate())+'-'+Datename(day ...
- (10) 深入了解Java Class文件格式(九)
转载:http://blog.csdn.net/zhangjg_blog/article/details/22432599 经过前八篇关于class文件的博客, 关于class文件格式的内容也基本上讲 ...