A Node Influence Based Label Propagation Algorithm for Community detection in networks 文章算法实现的疑问
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法。改进的地方在两个方面:
(1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI由大到小的顺序更新
得到ks值后,载计算一下节点邻居ks值和度值d的比值
(2)当出现次数最多的标签不止一个时,再计算一下标签重要度LI(label importance)
其实就是找到节点相同标签的那些令居计算一个合值,看着也不难啊
(3)最后这个算法使用的是异步传播
下面是我实现的代码
function Labelnew=NIBlpa(A,alpha)
% A Node Influence Based Label Propagation Algorithm for
% Community Detection in Networks
% [X,Y,Z] = NIBlpa(A,alpha)
%
% Inputs:
% k - clique size
% A - adjacency matrix
%
% Outputs:
% X - detected communities
% Y - all cliques (i.e. complete subgraphs that are not parts of larger
% complete subgraphs)
% Z - k-clique matrix
%
% Author : Yang Yang
% Email : bethansy@yahoo.com
ks=kshell(A);
n=size(A,1);
D=sum(A,2);
NI=ks;
label = 1:size(A,2);
%%
% calculate NI(node importance)
for i=1:n
Nei=find(A(i,:)==1);
NI(i,2)=ks(i,2)+alpha*sum(ks(Nei,2)./D(Nei));
end
sequence=sortrows(NI,-2);
%%
% Label propagation
Label1 = label;
Labelnew = Label1; while(1)
for i=1:n
% 找到邻居下标对应的标签
nb_lables = Labelnew(A(sequence(i,1),:)==1);
% 只考虑了每个节点至少有一个邻居,如果有孤立节点程序不运行保持原标签
if size(nb_lables,2)>0
x = HistRate(nb_lables);
max_nb_labels = x(x(:,2)==max(x(:,2)),1);
if size(max_nb_labels)==1
Labelnew(sequence(i,1))= max_nb_labels;
else
LI=zeros(length(max_nb_labels),1);
for ma=1:length(max_nb_labels)
Nei=find(A(sequence(i),:));
index=Labelnew(Nei)==max_nb_labels(ma);
LI(ma)=sum(NI(Nei(index),2)./D(Nei(index)));
end
[~,maxx]=max(LI);
Labelnew(sequence(i,1))=max_nb_labels(maxx);
end
end end
% 收敛条件,预防跳跃
if Labelnew==Label1
break;
else
Label1 = Labelnew; end
end
下面是调用K-shell算法的代码
function [kvalue]=kshell(A)
% A :邻接矩阵
% A=load('cdbBA_4000_5_0_.txt');
%
n=size(A,1);
kvalue=zeros(n,2);
kvalue(:,1)=[1:n]';
if find(sum(A,2)==0)
kvalue(sum(A,2)==0,2)=0;
end
a=1;k=1;
% 一层循环主要是叫K-shell中k值,当层层剥掉节点度k的节点后,将这些节点边删除,当网络中不再有小于等于k的节点后,k=k+1
while a
D=sum(A,2);
if sum(D)==0
break;
end
b=1;
% 二层循环主要是找到k层的所有节点
while b
index=find(D<=k&D>0);
if isempty(index)
b=0;continue;
else
A(index,:)=0;
A(:,index)=0;
D=sum(A,2);
kvalue(index,2)=k;
end
end
k=k+1;
end
end
但是后在几个数据集上测试效果都非常不好,例如karate上nmi只有0.2多,但是论文中作者得到的结果却是1,我已经把文章看了几遍还是找不出算法和作者哪里有出入,不过发现改进(2)的公式是错误的源头?抓头???其指教
2017.6.15 更新:用这个代码在人工网络上测试,结果和论文中有是一样的了。但是在实际网络karate、dolphin、football中结果和作者给出的结果相差很大。不知道为什么?
A Node Influence Based Label Propagation Algorithm for Community detection in networks 文章算法实现的疑问的更多相关文章
- LabelRank非重叠社区发现算法介绍及代码实现(A Stabilized Label Propagation Algorithm for Community Detection in Networks)
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不 ...
- SLAP(Speaker-Listener Label Propagation Algorithm)社区发现算法
其中部分转载的社区发现SLPA算法文章 一.概念 社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏. 设图G=G(V,E),所谓社区发现是指在图G中确定n ...
- 标签传播算法(Label Propagation Algorithm, LPA)初探
0. 社区划分简介 0x1:非重叠社区划分方法 在一个网络里面,每一个样本只能是属于一个社区的,那么这样的问题就称为非重叠社区划分. 在非重叠社区划分算法里面,有很多的方法: 1. 基于模块度优化的社 ...
- Label Propagation Algorithm LPA 标签传播算法解析及matlab代码实现
转载请注明出处:http://www.cnblogs.com/bethansy/p/6953625.html LPA算法的思路: 首先每个节点有一个自己特有的标签,节点会选择自己邻居中出现次数最多的标 ...
- VIPS: a VIsion based Page Segmentation Algorithm
VIPS: a VIsion based Page Segmentation Algorithm VIPS: a VIsion based Page Segmentation Algorithm In ...
- 标签传播算法(Label Propagation)及Python实现
众所周知,机器学习可以大体分为三大类:监督学习.非监督学习和半监督学习.监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的 ...
- Affinity Propagation Algorithm
The principle of Affinity Propagation Algorithm is discribed at above. It is widly applied in many f ...
- 论文笔记之:Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification ICCV 2013
Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification ICCV 2013 在基于Gr ...
- TOTP:Time-based One-time Password Algorithm(基于时间的一次性密码算法)
TOTP:Time-based One-time Password Algorithm(基于时间的一次性密码算法) TOTP - Time-based One-time Password Algori ...
随机推荐
- Tomcat中的Web.xml和servlet.xml的学习
Web.xml文件使用总结 作用: 存储项目相关的配置信息,保护servlet.解耦一些数据对程序的依赖 使用位置: 每个web项目中 Tomcat服务器中(在服务器目录conf目录中) 区别: We ...
- SEO方式之HTTPS 访问优化详解
SEO到底要不要做HTTPS?HTTPS对SEO的重要性 正方观点 1.HTTPS具有更好的加密性能,避免用户信息泄露: 2.HTTPS复杂的传输方式,降低网站被劫持的风险: 3.搜索引擎已经全面支持 ...
- javabean为什么要实现序列化?
javabean为什么要实现序列化? 所谓的Serializable,就是java提供的通用数据保存和读取的接口.至于从什么地方读出来和保存到哪里去都被隐藏在函数参数的背后了.这样子,任何类型只要实现 ...
- 实现WIFI MAC认证与漫游
前言 单位里有10来个网件的AP(WNAP210),需要对接入端(主要是手机)进行MAC认证,原来采用AP本地MAC认证,但是人员经常变动(离职),另外人员的岗位(流水线)也经常调整,这样就需在变动后 ...
- day16(jdbc进阶,jdbc之dbUtils)
1.jdbc进阶 jdbc事务管理 jdbc中的事务管理其实就是交给了连接对象去管理.先写一个简单的事务管理 public class Demo01 { private static Connecti ...
- The Real Meaning of Peace
The Real Meaning of Peace There once was a king who offered a prize to the artist who would paint th ...
- Spring 注入集合类型
定义了一个类: @Service public class StringTest implements CachedRowSet,SortedSet<String>,Cloneable @ ...
- EBS trace分析
下载Trace Analyzer,打开bin下的traceanalyzer.bat 即可分析EBS的trace文件,图形化界面,无需tkprof 需要配置javahome,确认java版本为1.6以上 ...
- [翻译]Writing Custom Wizards 编写自定义的向导
Writing Custom Wizards 编写自定义的向导 You can extend FastReport's functionality with the help of custom ...
- Html隐藏占空间与隐藏不占空间
隐藏不占用空间: display:none; 以下为示例代码: <span style="display:none;"> 获取中</span> 隐藏占用空间 ...