题目描述

给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去。

有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS 中所有点都至少经过一次的话,期望游走几步。

特别地,点 xx(即起点)视为一开始就被经过了一次。

答案对 998244353998244353 取模。

输入格式

第一行三个正整数 n,Q,xn,Q,x。

接下来 n-1n−1 行,每行两个正整数 (u,v)(u,v) 描述一条树边。

接下来 QQ 行,每行第一个数 kk 表示集合大小,接下来 kk 个互不相同的数表示集合 SS。

输出格式

输出 QQ 行,每行一个非负整数表示答案。

数据范围与提示

对于 20\%20% 的数据,有 1\leq n,Q\leq 51≤n,Q≤5。

另有 10\%10% 的数据,满足给定的树是一条链。

另有 10\%10% 的数据,满足对于所有询问有 k=1k=1。

另有 30\%30% 的数据,满足 1\leq n\leq 10 ,Q=11≤n≤10,Q=1。

对于 100\%100% 的数据,有 1\leq n\leq 181≤n≤18,1\leq Q\leq 50001≤Q≤5000,1\leq k\leq n1≤k≤n。

  • 题解:

    • 单点询问可以用高斯消元;
    • 这个做法直接扩展到集合的话可以求出到$S$中任意一个点的期望步数;
    • 如果对于一种状态,记录$S$中每个点被走到的步数$t$;
    • 那么$S$中每个点都走到就是$t$的最大值,而刚刚求出来的是$t$的最小值;
    • 套用最值反演:$max{S} = \sum_{T \subseteq S ,T \neq \emptyset }  (-1)^{|T|-1} min{T}$;
    • 现在只需要快速求出到$S$中任意一个点的期望步数,设$f_{u}$为$u$到$S$的期望步数:
    • 可以得到:
    • $f_{u} = \frac{1}{d_{u}}  \sum_{v} f_{v} + 1 $
    • 这里$v$表示和$u$相邻的点;
    • 由于是一颗树,单独考虑父亲;
    • $f_{u} = \frac{1}{d_{u}} f_{fa} + \frac{1}{d_{u}} \sum_{v}f_{v} + 1$ ①
    • 这里$v$表示$u$的儿子节点;
    • 假设已经处理好了$u$的儿子,为了能够递推,将式子写成:
    • $f_{u} = A_{u}f_{fa} + B_{u}$ ②
    • 那么$A_{v}$和$B_{v}$是已经处理好的,对①中的$v$用②,再对比化简的①和②:
    • $$f_{u} = \frac{1}{d_{u} - \sum_{v}A_{v} } f_{fa} + \frac{d_{u} + \sum_{v}B_{v} }{d_{u} - \sum_{v} A_{v}}$$
    • 这样就可以$O(n)$递推$AB$
    • 用$fmt$处理反演部分的话,复杂度就是:$O(n2^n \ + \ q )$;
  •  #include<bits/stdc++.h>
    #define mod 998244353
    using namespace std;
    const int N=,M=;
    int n,q,s,S,num[<<],f[<<],o=,hd[N],A[N],B[N],d[N],inv[M];
    struct Edge{int v,nt;}E[N<<];
    void adde(int u,int v){
    E[o]=(Edge){v,hd[u]};hd[u]=o++;
    E[o]=(Edge){u,hd[v]};hd[v]=o++;
    }
    inline int Inv(int x){return x<1e5?inv[x]:1ll*(mod-mod/x)*Inv(mod%x)%mod;}
    void dfs(int u,int fa){
    if(S&<<(u-)){A[u]=B[u]=;return;}
    int s1=,s2=;
    for(int i=hd[u];i;i=E[i].nt){
    int v=E[i].v;
    if(v==fa)continue;
    dfs(v,u);
    s1=(s1+A[v])%mod,s2=(s2+B[v])%mod;
    }
    A[u]=Inv((d[u]-s1+mod)%mod);
    B[u]=1ll*A[u]*(s2+d[u])%mod;
    }
    int main(){
    #ifndef ONLINE_JUDGE
    freopen("loj2542.in","r",stdin);
    freopen("loj2542.out","w",stdout);
    #endif
    scanf("%d%d%d",&n,&q,&s);
    inv[]=;
    for(int i=;i<=1e5;++i)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
    for(int i=,u,v;i<n;++i){
    scanf("%d%d",&u,&v);
    adde(u,v);
    d[u]++,d[v]++;
    }
    for(int i=;i<<<n;++i){
    S=i;dfs(s,);
    num[i]=num[i>>]+(i&);
    f[i]=(num[i]&)?B[s]:(mod-B[s])%mod;
    }
    for(int i=;i<n;++i)
    for(int j=<<i;j<<<n;++j){
    if(j>>i&)f[j]=(f[j]+f[j^(<<i)])%mod;
    }
    for(int i=,k;i<=q;++i){
    scanf("%d",&k);
    S=;for(int j=,x;j<=k;++j)scanf("%d",&x),S^=<<(x-);
    printf("%d\n",f[S]);
    }
    return ;
    }

loj2542「PKUWC2018」随机游走的更多相关文章

  1. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  2. loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】

    题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...

  3. LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】

    题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...

  4. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  7. 【LOJ2542】「PKUWC2018」随机游走

    题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  8. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  9. 「PKUWC2018」随机游走

    题目 我暴力过啦 看到这样的东西我们先搬出来\(min-max\)容斥 我们设\(max(S)\)表示\(x\)到达点集\(S\)的期望最晚时间,也就是我们要求的答案了 显然我们也很难求出这个东西,但 ...

随机推荐

  1. Hands on Machine Learning with Sklearn and TensorFlow学习笔记——机器学习概览

    一.什么是机器学习? 计算机程序利用经验E(训练数据)学习任务T(要做什么,即目标),性能是P(性能指标),如果针对任务T的性能P随着经验E不断增长,成为机器学习.[这是汤姆米切尔在1997年定义] ...

  2. kali linux执行apt-get update失败(数字签名过期)

    想要安装某个软件,执行apt-get update 失败,出现下面的错误: 自己查看了更新源是没有问题的,根据提示的错误google了一下,发现是数字签名过期了. 执行下面命令: apt-key ad ...

  3. js多条件if语句简写发生Uncaught SyntaxError: Unexpected token }

    改写原生js 多条件if判断语句时,采用三元方法,发生Uncaught SyntaxError: Unexpected token } function compareImgSize() { var ...

  4. [shell] bash数组(for时排序)

    for处理时会自动把顺序按A-Z排序了 [root@XM-v106 ~]# bash b.sh A -> B -> C -> D -> E -> [root@XM-v10 ...

  5. linux获得命令使用帮助

    1. 内部命令: help CMD 2. 外部命令: CMD --help 3. 命令手册: manual(所有命令) man CMD 分章节: 1: 用户命令(User Commands - /bi ...

  6. No.11_功能规格说明书

    功能规格说明书 • 基本目标 为用户提供更加便捷和人性化的闹钟提醒服务,以群组为单位规划时间安排与分配,对于个人用户,实现个人的设置闹钟,取消闹钟的操作,这些操作将会上传至数据库,并被同步到所有的客户 ...

  7. 修复webpack自动刷新页面慢的问题

    新建.babelrc文件,配置如下 { "presets": [ "es2015" ], "ignore":[ "react-ro ...

  8. 猫咪记单词——NABCD模型分析

    N ——Need 需求:学习英语是一件非常重要的事.面对各种各样的考试,学习英语,最重要的就是词汇量,背单词是提高词汇量的最直接的方法,但是单纯的背单词太单调.寻找一些合适的,更易于接受的背单词学习英 ...

  9. BNUOJ 52318 Be Friends prim+Trie

    题目链接: https://acm.bnu.edu.cn/v3/problem_show.php?pid=52318 B. Be Friends Case Time Limit: 2500msMemo ...

  10. 【CSAPP笔记】1. 位、字节、整型

    <Computer Systems a Programmer's Perspective>,机械工业出版社.中文译名<深入理解计算机系统>.作者:(美)Randal E.Bry ...