题目描述

给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去。

有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS 中所有点都至少经过一次的话,期望游走几步。

特别地,点 xx(即起点)视为一开始就被经过了一次。

答案对 998244353998244353 取模。

输入格式

第一行三个正整数 n,Q,xn,Q,x。

接下来 n-1n−1 行,每行两个正整数 (u,v)(u,v) 描述一条树边。

接下来 QQ 行,每行第一个数 kk 表示集合大小,接下来 kk 个互不相同的数表示集合 SS。

输出格式

输出 QQ 行,每行一个非负整数表示答案。

数据范围与提示

对于 20\%20% 的数据,有 1\leq n,Q\leq 51≤n,Q≤5。

另有 10\%10% 的数据,满足给定的树是一条链。

另有 10\%10% 的数据,满足对于所有询问有 k=1k=1。

另有 30\%30% 的数据,满足 1\leq n\leq 10 ,Q=11≤n≤10,Q=1。

对于 100\%100% 的数据,有 1\leq n\leq 181≤n≤18,1\leq Q\leq 50001≤Q≤5000,1\leq k\leq n1≤k≤n。

  • 题解:

    • 单点询问可以用高斯消元;
    • 这个做法直接扩展到集合的话可以求出到$S$中任意一个点的期望步数;
    • 如果对于一种状态,记录$S$中每个点被走到的步数$t$;
    • 那么$S$中每个点都走到就是$t$的最大值,而刚刚求出来的是$t$的最小值;
    • 套用最值反演:$max{S} = \sum_{T \subseteq S ,T \neq \emptyset }  (-1)^{|T|-1} min{T}$;
    • 现在只需要快速求出到$S$中任意一个点的期望步数,设$f_{u}$为$u$到$S$的期望步数:
    • 可以得到:
    • $f_{u} = \frac{1}{d_{u}}  \sum_{v} f_{v} + 1 $
    • 这里$v$表示和$u$相邻的点;
    • 由于是一颗树,单独考虑父亲;
    • $f_{u} = \frac{1}{d_{u}} f_{fa} + \frac{1}{d_{u}} \sum_{v}f_{v} + 1$ ①
    • 这里$v$表示$u$的儿子节点;
    • 假设已经处理好了$u$的儿子,为了能够递推,将式子写成:
    • $f_{u} = A_{u}f_{fa} + B_{u}$ ②
    • 那么$A_{v}$和$B_{v}$是已经处理好的,对①中的$v$用②,再对比化简的①和②:
    • $$f_{u} = \frac{1}{d_{u} - \sum_{v}A_{v} } f_{fa} + \frac{d_{u} + \sum_{v}B_{v} }{d_{u} - \sum_{v} A_{v}}$$
    • 这样就可以$O(n)$递推$AB$
    • 用$fmt$处理反演部分的话,复杂度就是:$O(n2^n \ + \ q )$;
  •  #include<bits/stdc++.h>
    #define mod 998244353
    using namespace std;
    const int N=,M=;
    int n,q,s,S,num[<<],f[<<],o=,hd[N],A[N],B[N],d[N],inv[M];
    struct Edge{int v,nt;}E[N<<];
    void adde(int u,int v){
    E[o]=(Edge){v,hd[u]};hd[u]=o++;
    E[o]=(Edge){u,hd[v]};hd[v]=o++;
    }
    inline int Inv(int x){return x<1e5?inv[x]:1ll*(mod-mod/x)*Inv(mod%x)%mod;}
    void dfs(int u,int fa){
    if(S&<<(u-)){A[u]=B[u]=;return;}
    int s1=,s2=;
    for(int i=hd[u];i;i=E[i].nt){
    int v=E[i].v;
    if(v==fa)continue;
    dfs(v,u);
    s1=(s1+A[v])%mod,s2=(s2+B[v])%mod;
    }
    A[u]=Inv((d[u]-s1+mod)%mod);
    B[u]=1ll*A[u]*(s2+d[u])%mod;
    }
    int main(){
    #ifndef ONLINE_JUDGE
    freopen("loj2542.in","r",stdin);
    freopen("loj2542.out","w",stdout);
    #endif
    scanf("%d%d%d",&n,&q,&s);
    inv[]=;
    for(int i=;i<=1e5;++i)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
    for(int i=,u,v;i<n;++i){
    scanf("%d%d",&u,&v);
    adde(u,v);
    d[u]++,d[v]++;
    }
    for(int i=;i<<<n;++i){
    S=i;dfs(s,);
    num[i]=num[i>>]+(i&);
    f[i]=(num[i]&)?B[s]:(mod-B[s])%mod;
    }
    for(int i=;i<n;++i)
    for(int j=<<i;j<<<n;++j){
    if(j>>i&)f[j]=(f[j]+f[j^(<<i)])%mod;
    }
    for(int i=,k;i<=q;++i){
    scanf("%d",&k);
    S=;for(int j=,x;j<=k;++j)scanf("%d",&x),S^=<<(x-);
    printf("%d\n",f[S]);
    }
    return ;
    }

loj2542「PKUWC2018」随机游走的更多相关文章

  1. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  2. loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】

    题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...

  3. LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】

    题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...

  4. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  5. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  6. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  7. 【LOJ2542】「PKUWC2018」随机游走

    题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  8. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  9. 「PKUWC2018」随机游走

    题目 我暴力过啦 看到这样的东西我们先搬出来\(min-max\)容斥 我们设\(max(S)\)表示\(x\)到达点集\(S\)的期望最晚时间,也就是我们要求的答案了 显然我们也很难求出这个东西,但 ...

随机推荐

  1. 爬虫进阶教程:极验(GEETEST)验证码破解教程

    摘要 爬虫最大的敌人之一是什么?没错,验证码!Geetest作为提供验证码服务的行家,市场占有率还是蛮高的.遇到Geetest提供的滑动验证码怎么破?授人予鱼不如授人予渔,接下来就为大家呈现本教程的精 ...

  2. Geatpy遗传算法在曲线寻优上的初步探究

    园子里关于遗传算法的教案不少,但基于geatpy框架的并未多见,故分享此文以作参考,还望广大园友多多指教! Geatpy出自三所名校联合团队之手,是遗传算法领域的权威框架(python),其效率之高. ...

  3. TFS任务预览

    不太熟悉TFS任务项的建立. 初步建立及按老师要求分配到个人的任务设置与时间安排如下: (长时间任务可由多人合作完成,具体根据情况迅速调整任务分配) 加上每人需要进行阅读前一小组的代码需要时间2*8= ...

  4. Hibernate 与 mybatis 区别

    JAVA面试中问及HIBERNATE与 MYBATIS的对比,在这里做一下总结   我是一名java开发人员,hibernate以及mybatis都有过学习,在java面试中也被提及问道过,在项目实践 ...

  5. Arduino Leonardo读取DHT22温湿度传感器

    首先在该地址下载库:https://codeload.github.com/nethoncho/Arduino-DHT22/zip/master 使用以下代码测试: /**************** ...

  6. Java实现小学四则运算练习

     Github项目地址:https://github.com/feser-xuan/Arithmetic.git 1.需求分析 软件基本功能要求如下: 程序可接收一个输入参数n,然后随机产生n道加减乘 ...

  7. 蜗牛慢慢爬 LeetCode 6. ZigZag Conversion [Difficulty: Medium]

    题目 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows li ...

  8. jmeter 多线程组间变量共享

    jmeter的线程组之间是相互独立的,各个线程组互不影响,所以线程组A中输出的参数,是无法直接在线程组B中被调用的. 但是有时为了方便管理,我们可能是把各个接口单独存放在不同的线程组中.拿Cookie ...

  9. redis哨兵机制二(转)

    概述 Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案,当用Redis做Master-slave的高可用方案时,假如 master宕机了,Redis本身(包括它的很多客户端) ...

  10. Windows10 桌面显示 我的电脑

    桌面上面有我的电脑还是非常方便的 但是 不激活有时候没法选择: 方法 桌面空白处右键---个性化 然后在 个性化- 主题- 桌面图标设置 增加即可.