Resources in Visual Tracking
这个应该是目前最全的Tracking相关的文章了
一、Surveyand benchmark:
1. PAMI2014:VisualTracking_ An Experimental Survey,代码:http://alov300pp.joomlafree.it/trackers-resource.html
2. CVPR2013:Online Object Tracking: A Benchmark(需FQ)
3. SignalProcessing 2011:Video Tracking Theory andPractice
4. ACCV2006:Tutorials-Advances in VisualTracking:中文:视觉跟踪的进展
5. Evaluationof an online learning approach for robust object tracking
二、研究团体:
1. Universityof California at Merced:Ming-HsuanYang视觉跟踪当之无愧第一人,后面的人基本上都和气其有合作关系,他引近9000
PublicationsPAMI:6,CVPR:26,ECCV:17,BMCV:6,NIPS:6,IJCV:3,ACCV:3
代表作:RobustVisual Tracking via Consistent Low-Rank Sparse Learning
FCT,IJCV2014:FastCompressive Tracking
RST,PAMI2014:RobustSuperpixel Tracking; SPT,ICCV2011, Superpixeltracking
SVD,TIP2014:LearningStructured Visual Dictionary for Object Tracking
ECCV2014: SpatiotemporalBackground Subtraction Using Minimum Spanning Tree and Optical Flow
PAMI2011:RobustObject Tracking with Online Multiple Instance Learning
MIT,CVPR2009: Visualtracking with online multiple instance learning
IJCV2008: IncrementalLearning for Robust Visual Tracking
2. SeoulNational University Professor:KyoungMuLee2013年在PAMI上发表5篇,至今无人能及
文献列表PAMI:13,CVPR:30,ECCV:12,ICCV:8,PR:4
PAMI2014:A GeometricParticle Filter for Template-Based Visual Tracking
ECCV2014: Robust Visual Tracking with Double Bounding Box Model
PAMI2013:HighlyNonrigid Object Tracking via Patch-based Dynamic Appearance Modeling
CVPR2014: Interval Tracker: Tracking by Interval Analysis
CVPR2013: MinimumUncertainty Gap for Robust Visual Tracking
CVPR2012:RobustVisual Tracking using Autoregressive Hidden Markov Model
VTS,ICCV2011:Tracking by Sampling Trackers.
VTD,CVPR2010: VisualTracking Decomposition
TST,ICCV2011:Tracking by sampling trackers
3. TempleUniversity,凌海滨
Publication List PMAI:4,CVPR:19,ICCV:17,ECCV:5,TIP:9
CVPR2014:Multi-targetTracking with Motion Context in Tenor Power Iteration
ECCV2014:TransferLearning Based Visual Tracking with Gaussian Process Regression
ICCV2013:Findingthe Best from the Second Bests - Inhibiting Subjective Bias in Evaluation ofVisual Tracking Algorithms
CVPR2013: Multi-targetTracking by Rank-1 Tensor Approximation
CVPR2012:RealTime Robust L1 Tracker Using Accelerated Proximal Gradient Approach
TIP2012: Real-timeProbabilistic Covariance Tracking with Efficient Model Update
ICCV2011: BlurredTarget Tracking by Blur-driven Tracker
PAMI2011ICCV2009: RobustVisual Tracking and Vehicle Classification via Sparse Representation
ICCV2011:RobustVisual Tracking using L1 Minimization
L1O,CVPR2011: Minimumerror bounded efficient l1 tracker with occlusion detection
L1T, ICCV2009:Robustvisual tracking using l1 minimization
4. HongKong Polytechnic University AssociateProfessor: Lei Zhang
PapersPAMI:2,CVPR:18,ICCV:14,ECCV:12,ICPR:6,PR:28,TIP:4
STC,ECCV2014: FastTracking via Dense Spatio-Temporal Context Learning
FCT,PAMI2014,ECCV2012:Fast CompressiveTracking, Minghsuan Yang
IETComputer Vision2012:Scale and Orientation Adaptive Mean Shift Tracking
IJPRAI2009:RobustObject Tracking using Joint Color-Texture Histogram
5. 大连理工大学教授 卢湖川国内追踪领域第一人
CVPR2014:VisualTracking via Probability Continuous Outlier Model
TIP2014:VisualTracking via Discriminative Sparse Similarity Map
TIP2014: RobustSuperpixel Tracking
TIP2014: RobustObject Tracking via Sparse Collaborative Appearance Model
CVPR2013: LeastSoft-threshold Squares Tracking, MinghsuanYang
TIP2013:Online Object Trackingwith Sparse Prototypes, Minghsuan Yang
SignalProcessing Letters2013: Graph-RegularizedSaliency Detection With Convex-Hull-Based Center Prior
SignalProcessing2013: On-line LearningParts-based Representation via Incremental Orthogonal Projective Non-negativeMatrix Factorization
CVPR2012:RobustObject Tracking viaSparsity-based Collaborative Model, MinghsuanYang
CVPR2012:VisualTracking via Adaptive Structural Local Sparse Appearance Model, MinghsuanYang
SignalProcessing Letters 2012:Object tracking via 2DPCA and L1-regularization
IETImage Processing 2012:Visual Tracking via Bag of Features
ICPR2012:Superpixel Level Object Recognition Under Local Learning Framework
ICPR2012: Fragment-BasedTracking Using Online Multiple Kernel Learning
ICPR2012: ObjectTracking Based On Local Learning
ICPR2012: ObjectTracking with L2_RLS
ICPR2011:ComplementaryVisual Tracking
FG2011:OnlineMultiple Support Instance Tracking
SignalProcessing2010: A novel methodfor gaze tracking by local pattern model and support vector regressor
ACCV2010: OnFeature Combination and Multiple Kernel Learning for Object Tracking
ACCV: RobustTracking Based on Pixel-wise Spatial Pyramid and Biased Fusion
ACCV2010: HumanTracking by Multiple Kernel Boosting with Locality Affinity Constraints
ICCV2011:SuperpixelTracking, Minghsuan Yang
ICPR2010: RobustTracking Based on Boosted Color Soft Segmentation and ICA-R
ICPR2010: IncrementalMPCA for Color Object Tracking
ICPR2010: Bagof Features Tracking
ICPR2008: GazeTracking By Binocular Vision and LBP Features
6. 南京信息工程大学教授,KaiHua Zhang
7. OregonstateProfessor,Sinisa Todorovic由视频分割转向Tracking
CSL,CVPR2014: Multi-ObjectTracking via Constrained Sequential Labeling
CVPR2011:MultiobjectTracking as Maximum Weight Independent Set
8. GrazUniversity of Technology, Austria,Horst Possegger博士
CVPR2014:OcclusionGeodesics for Online Multi-Object Tracking
CVPR2013: RobustReal-Time Tracking of Multiple Objects by Volumetric Mass Densities
9. 马里兰大学Zdenek Kalal博士
TLD,PAMI2011: Tracking-Learning-Detection
TIP2010: Face-TLD:Tracking-Learning-Detection Applied to Faces
ICPR2010:Forward-BackwardError: Automatic Detection of Tracking Failures
CVPR2010: P-N Learning:Bootstrapping Binary Classifiers by Structural Constraints
BMVC2008: Weighted Sampling forLarge-Scale Boosting
中文讲解:
TLD(Tracking-Learning-Detection)学习与源码理解
三、其他早期工作:
CamShift算法,OpenCV实现1--Back Projection
目标跟踪学习笔记_2(particle filter初探1)
目标跟踪学习笔记_3(particle filter初探2)
目标跟踪学习笔记_4(particle filter初探3)
目标跟踪学习系列一:on-line boosting and vision 阅读
原文:http://blog.csdn.net/minstyrain/article/details/38640541
Resources in Visual Tracking的更多相关文章
- Resources in Visual Tracking(转载)
这位博主总结了比较新的tracking方面的资源:http://blog.csdn.net/minstyrain/article/details/38640541 http://xilinx.eetr ...
- Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking
Martin Danelljan 判决类追踪模型是由训练样本学习得到,但是为了适应目标和背景的变化sample set在每一帧中都会更新. 令(xjk, yjk)表示第k帧k={1,2,...,t}中 ...
- (转)CVPR 2016 Visual Tracking Paper Review
CVPR 2016 Visual Tracking Paper Review 本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...
- 论文笔记之: Hierarchical Convolutional Features for Visual Tracking
Hierarchical Convolutional Features for Visual Tracking ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer ...
- Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...
- Correlation Filter in Visual Tracking
涉及两篇论文:Visual Object Tracking using Adaptive Correlation Filters 和Fast Visual Tracking via Dense Spa ...
- 论文笔记之:Multiple Feature Fusion via Weighted Entropy for Visual Tracking
Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进 ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
随机推荐
- ADO.NET系列之Command对象
ADO.NET系列之Connection对象 ADO.NET系列之Command对象 ADO.NET系列之DataAdapter对象 ADO.NET系列之事务和调用存储过程 上一篇<ADO.NE ...
- 用idea做springboot开发,设置thymeleaf时候,新手容易忽略误区
最近小编因为工作原因需要完成工厂自动化改造,而思来想去觉得还是用Java开发,因为很久没有敲过代码,对java这块已经抛掉很多年.作为工厂自动开发或者大型企业级开发,个人认为java和C#会比较合适, ...
- NetCore入门篇:(九)Net Core项目使用Session及用Redis做分布式
一.简介 1.因为Net Core默认是没有启动Session功能的,如果需要使用,需要通过代码开启. 2.本篇说明如果启用默认Session实现,即Session存到内存中. 3.本篇扩展说明如何用 ...
- .Net框架搭建:SQL Server EF MVC简单三层框架
https://blog.csdn.net/pukuimin1226/article/details/52313656
- js判断图片是否加载完毕
附件: https://www.jb51.net/article/102385.htm 问题: .offset().top和$(window).scrollTop()每次刷新页面后滚动的值有时候会不 ...
- 《Python黑帽子:黑客与渗透测试编程之道》 网络基础
TCP客户端: 示例中socket对象有两个参数,AF_INET参数表明使用IPv4地址或主机名 SOCK_STREAM参数表示是一个TCP客户端.访问的URL是百度. #coding=utf-8 i ...
- SAX,功能强大的 API
https://www.ibm.com/developerworks/cn/xml/x-saxapi/ SAX,功能强大的 API 在摘自 XML by Example 的本篇预览中比较了 DOM 和 ...
- HttpClient调用IdentityServer4获取Token并调用接口
using System; using System.Net.Http; using IdentityModel.Client; namespace ClientCredential { class ...
- iOS---UICollectlionView 的使用
UICollectlionView继承自UIScrollerview,跟tableview的使用很相似. 下面是UIcollectionView的一些属性和代理方法. #import "Vi ...
- 【codeforces 623E】dp+FFT+快速幂
题目大意:用$[1,2^k-1]$之间的证书构造一个长度为$n$的序列$a_i$,令$b_i=a_1\ or\ a_2\ or\ ...\ or a_i$,问使得b序列严格递增的方案数,答案对$10^ ...