[Agc001E] BBQ Hard
[Agc001E] BBQ Hard
题目大意
给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j+b_j}{a_i+a_j}\)。
试题分析
显然,后面的式子是一个\(\binom{n+m}{m}\)的形式,也就是我们从位置\((-a_i,-b_i)\)走到位置\((a_j,b_j)\)。
那么我们把式子转化成:$$\frac{\sum_{i=1}^n \sum_{j=1}^n \binom {a_i+b_i+a_j+b_j} {a_i+a_j} - \sum_{i=1}^n \binom{a_i+b_i+a_i+b_i}{a_i+b_i} }{2}$$
然后前面的可以直接dp,后面的直接算就好了。
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int INF=9999999;
const int MAXN=300010;
const int MAXM=2010;
const int Mod = 1e9+7;
int N; int a[MAXN+1],b[MAXN+1];
int f[MAXM*2+1][MAXM*2+1];
LL ifac[MAXN+1],fac[MAXN+1],inv[MAXN+1];
int A[MAXN+1],B[MAXN+1];
inline LL C(LL n,LL m){
if(n<m) return 0; if(n==m||!m) return 1;
return fac[n]*ifac[m]%Mod*ifac[n-m]%Mod;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(); fac[0]=1; inv[1]=1; ifac[1]=ifac[0]=1; LL ans=0;
for(int i=1;i<=(MAXM<<2)+100;i++) fac[i]=fac[i-1]*i%Mod;
for(int i=2;i<=(MAXM<<2)+100;i++){
inv[i]=(Mod-(Mod/i))*inv[Mod%i]%Mod;
ifac[i]=ifac[i-1]*inv[i]%Mod;
}
for(int i=1;i<=N;i++){
A[i]=read(),B[i]=read();
f[MAXM-A[i]][MAXM-B[i]]++;
ans=(ans-C(A[i]*2+B[i]*2,A[i]*2)%Mod+Mod)%Mod;
}
for(int i=1;i<=MAXM*2;i++){
for(int j=1;j<=MAXM*2;j++){
(f[i][j]+=f[i-1][j])%=Mod;
(f[i][j]+=f[i][j-1])%=Mod;
}
}
for(int i=1;i<=N;i++){
(ans+=f[A[i]+MAXM][B[i]+MAXM])%=Mod;
} printf("%lld\n",ans*inv[2]%Mod);
return 0;
}
[Agc001E] BBQ Hard的更多相关文章
- AGC001E BBQ Hard 组合、递推
传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...
- [agc001E]BBQ Hard[组合数性质+dp]
Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...
- agc001E - BBQ Hard(dp 组合数)
题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...
- AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
- NOIp2018模拟赛三十八
爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...
- (浙江金华)Day 1 组合数计数
目录 Day 1 组合计数 1.组合数 (1).C(n,m) 读作n选m,二项式系数 : (2).n个东西里选m个的方案数 不关心选的顺序: (3).二项式系数--->多项式系数: 2.组合数计 ...
- 【agc001e】BBQ HARD(动态规划)
[agc001e]BBQ HARD(动态规划) 题面 atcoder 洛谷 题解 这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发 这题可以说非常妙了. 我们可以把这个值看做在网格图上 ...
- AGC001 E - BBQ Hard 组合数学
题目链接 AGC001 E - BBQ Hard 题解 考虑\(C(n+m,n)\)的组合意义 从\((0,0)\)走到\((n,m)\)的方案数 从\((x,y)\)走到\((x+n,y+m)\)的 ...
随机推荐
- 《廖雪峰Git教程》学习笔记
原文链接 一.创建版本库 ①初始化一个Git仓库:git init ②添加文件到Git仓库:1.git add<file> ; 2.git commit 二.时光机穿梭 ①查看工作区状态 ...
- 深入理解KS
一.概述 KS(Kolmogorov-Smirnov)评价指标,通过衡量好坏样本累计分布之间的差值,来评估模型的风险区分能力. KS.AUC.PR曲线对比: 1)ks和AUC一样,都是利用TPR.FP ...
- aarch64_l4
livestreamer-1.12.2-7.fc26.noarch.rpm 2017-02-11 17:38 537K fedora Mirroring Project lizardfs-adm-3. ...
- ETL利器Kettle实战应用解析系列三
本系列文章主要索引如下: 一.ETL利器Kettle实战应用解析系列一[Kettle使用介绍] 二.ETL利器Kettle实战应用解析系列二 [应用场景和实战DEMO下载] 三.ETL利器Kettle ...
- PlantUML——4.实例演示1
给自己发消息 @startuml Alice -> Alice : This is a signal to self.\nIt also demonstrates \nmultiline tex ...
- P2733 家的范围 Home on the Range
又是一校内模拟赛见的题 不知道为什么出题人怎么这么喜欢USACO的Farmer John的他的牛... 感觉这道题不是特别的难,但也不很水 同机房的神仙们都说这个题是一道二维前缀和的裸题,但我当时的确 ...
- set IDENTITY_INSERT on 和 off 的设置
qlserver 批量插入记录时,对有标识列的字段要设置 set IDENTITY_INSERT 表名 on,然后再执行插入记录操作;插入完毕后恢复为 off 设置 格式: set IDENTITY ...
- vi/vim基本使用方法(转)
转自:http://www.cnblogs.com/itech/archive/2009/04/17/1438439.html vi/vim 基本使用方法 本文介绍了vi (vim)的基本使用方法,但 ...
- hdu 5120(求两个圆环相交的面积 2014北京现场赛 I题)
两个圆环的内外径相同 给出内外径 和 两个圆心 求两个圆环相交的面积 画下图可以知道 就是两个大圆交-2*小圆与大圆交+2小圆交 Sample Input22 30 00 02 30 05 0 Sam ...
- ZooKeeper实践:(2)配置管理
一. 前言 配置是每个程序不可或缺的一部分,配置有多重方式:xml.ini.property.database等等,从最初的单机环境到现在的分布式环境. 1. 以文件的格式存储配置,修改任何都 ...