51nod 1103 N的倍数 (鸽巢原理)
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
8
2
5
6
3
18
7
11
19
2
2
6 令i的前缀和%n为sum
如果sum=0,则输出1到i的数
用数组b[i][]记录前缀和%n=i的数有几个、分别是谁
由鸽巢原理可得,在没有sum=0的情况下,
所有的前缀和%n的结果一定有相同的数
(n-1种情况,n个前缀和)
所以本题一定有解
若a、b的前缀和%n相同
那么a+1到b之间的数的和为n的倍数
#include<cstdio>
#define N 50001
using namespace std;
int a[N],sum[N];
int n;
int b[N][];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=(sum[i-]+a[i])%n;
if(!sum[i])
{
printf("%d\n",i);
for(int j=;j<=i;j++) printf("%d\n",a[j]);
return ;
}
b[sum[i]][++b[sum[i]][]]=i;
if(b[sum[i]][]>)
{
printf("%d\n",b[sum[i]][]-b[sum[i]][]);
for(int j=b[sum[i]][]+;j<=b[sum[i]][];j++)
printf("%d\n",a[j]);
return ;
}
}
}
51nod 1103 N的倍数 (鸽巢原理)的更多相关文章
- 51nod 1574 排列转换(贪心+鸽巢原理)
题意:有两个长度为n的排列p和s.要求通过交换使得p变成s.交换 pi 和 pj 的代价是|i-j|.要求使用最少的代价让p变成s. 考虑两个数字pi和pj,假如交换他们能使得pi到目标的距离减少,p ...
- 51nod 1103【鸽巢原理】
思路: 这道题嘛有些弯还是要转的,比如你说让你搞n的倍数,你别老老实实照她的意思去啊,倍数可以除法,取膜 . 因为n个数我们可以求前缀和然后取膜,对n取膜的话有0-n-1种情况,所以方案一定是有的,说 ...
- 51nod 1103 N的倍数(抽屉原理)
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- poj 2356 Find a multiple(鸽巢原理)
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...
- poj2356 Find a multiple(抽屉原理|鸽巢原理)
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...
- NYOJ 417 死神来了 鸽巢原理
死神来了 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 有一天,王小子在遨游世界时,遇到了一场自然灾害.一个人孤独的在一个岛上,没有吃的没有喝的.在他饥寒交迫将要死亡时 ...
- POJ2356 Find a multiple 抽屉原理(鸽巢原理)
题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数: 在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l ...
- poj Find a multiple【鸽巢原理】
参考:https://www.cnblogs.com/ACShiryu/archive/2011/08/09/poj2356.html 鸽巢原理??? 其实不用map但是习惯了就打的map 以下C-c ...
随机推荐
- sprint初步计划(第一天)
一.现状 小组成员初步了解四则运算程序编写大概内容,进行简单的讨论.只知道大概的流程,实际还没做出.现在明确目标是把我们写Java的四则运算变成一个手机APP,关于手机ap,我们还不是很了解,所以需要 ...
- HDU 2086 A1 = ?
http://acm.hdu.edu.cn/showproblem.php?pid=2086 Problem Description 有如下方程:Ai = (Ai-1 + Ai+1)/2 - Ci ( ...
- Linux里的稀疏文件
今天发现一个有意思的现象,文件系统大小只有37GB,上面却有一个900GB的文件!查了下,这个叫“稀疏文件”,我理解类似于VMWare里的瘦硬盘模式吧,先预先划出一块空间,然后往里填数据. [root ...
- Oracle Instant Client
下载地址: https://www.oracle.com/technetwork/database/database-technologies/instant-client/downloads/ind ...
- 微信小程序 功能函数 客服
<view> <view class='btn-img'> <image class='image-full' src='../../imgs/index/tab6.pn ...
- 谁能告诉delphi7 的updatebatch使用属性说明?
谁能告诉delphi7 的updatebatch使用属性说明? ADODataSet1.UpdateBatch(arAll); 就是提交你的数据集到数据库 arCurrentOnly the upda ...
- 计算机网络【10】—— Cookie与Session
一.cookie 和session 的区别 a.cookie数据存放在客户的浏览器上,session数据放在服务器上. b.cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKI ...
- 【大数据】Kafka学习笔记
第1章 Kafka概述 1.1 消息队列 (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息 ...
- 左连接,右连接和等值连接(left join,right join和inner join)
left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录inner join(等值连接) 只 ...
- 【刷题】BZOJ 2959 长跑
Description 某校开展了同学们喜闻乐见的阳光长跑活动.为了能"为祖国健康工作五十年",同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上 ...