【BZOJ2962】序列操作(线段树)
【BZOJ2962】序列操作(线段树)
题面
题解
设\(s[i]\)表示区间内选择\(i\)个数的乘积的和
考虑如何向上合并?
\(s[k]=\sum_{i=0}^klson.s[i]*rson.s[k-i]\)
相当于是一个卷积形式
区间取相反数是一个很好处理的操作
把所有的\(s[k],k\&1=1\)取相反数就好了
区间加法?
假设我们已经知道了原来的所有的答案
现在的数从原来的\(a[1],a[2],....\)
变成了\(a[1]+x,a[2]+x,....\)
把乘积的形式拆开
发现变成了组合数乘\(x\)的若干次幂再乘上原来\(s[i]\)的值得形式
直接修改即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 19940417
#define MAX 55555
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int C[MAX][25];
int n,Q;
struct Node
{
int s[25];
int tag,neg;
}t[MAX<<2];
Node operator+(Node a,Node b)
{
Node c;c.tag=c.neg=0;
for(int i=0;i<=20;++i)
{
c.s[i]=0;
for(int j=0;j<=i;++j)
c.s[i]=(c.s[i]+1ll*a.s[j]*b.s[i-j]%MOD)%MOD;
}
return c;
}
void Build(int now,int l,int r)
{
t[now].s[0]=1;
if(l==r){t[now].s[1]=read();return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=t[lson]+t[rson];
}
void putneg(int now)
{
for(int i=1;i<=20;i+=2)t[now].s[i]=(-t[now].s[i]+MOD)%MOD;
t[now].neg^=1;t[now].tag=(-t[now].tag+MOD)%MOD;
}
void puttag(int now,int l,int r,int w)
{
int s[25];memset(s,0,sizeof(s));
for(int i=1;i<=20;++i)
{
int pw=1;
for(int j=i;j>=0;--j,pw=1ll*pw*w%MOD)
s[i]=(s[i]+1ll*t[now].s[j]*C[r-l+1-j][i-j]%MOD*pw%MOD)%MOD;
}
for(int i=1;i<=20;++i)
t[now].s[i]=(s[i]+MOD)%MOD;
t[now].tag=(t[now].tag+MOD+w)%MOD;
}
void pushdown(int now,int l,int r)
{
if(t[now].neg)
{
putneg(lson);putneg(rson);
t[now].neg^=1;
}
if(t[now].tag)
{
int mid=(l+r)>>1;
puttag(lson,l,mid,t[now].tag);
puttag(rson,mid+1,r,t[now].tag);
t[now].tag=0;
}
}
void Modify_Neg(int now,int l,int r,int L,int R)
{
if(L<=l&&r<=R){putneg(now);return;}
pushdown(now,l,r);
int mid=(l+r)>>1;
if(L<=mid)Modify_Neg(lson,l,mid,L,R);
if(R>mid)Modify_Neg(rson,mid+1,r,L,R);
t[now]=t[lson]+t[rson];
}
void Modify_pls(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){puttag(now,l,r,w);return;}
pushdown(now,l,r);
int mid=(l+r)>>1;
if(L<=mid)Modify_pls(lson,l,mid,L,R,w);
if(R>mid)Modify_pls(rson,mid+1,r,L,R,w);
t[now]=t[lson]+t[rson];
}
Node Query(int now,int l,int r,int L,int R)
{
if(l==L&&r==R)return t[now];
pushdown(now,l,r);
int mid=(l+r)>>1;
if(R<=mid)return Query(lson,l,mid,L,R);
if(L>mid)return Query(rson,mid+1,r,L,R);
return Query(lson,l,mid,L,mid)+Query(rson,mid+1,r,mid+1,R);
}
int main()
{
n=read();Q=read();
C[1][0]=C[1][1]=C[0][0]=1;
for(int i=2;i<=n;++i)
{
C[i][0]=1;
for(int j=1;j<=min(i,22);++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
Build(1,1,n);
char ch[5];
while(Q--)
{
scanf("%s",ch);
if(ch[0]=='I')
{
int l=read(),r=read(),w=read();
Modify_pls(1,1,n,l,r,w);
}
if(ch[0]=='R')
{
int l=read(),r=read();
Modify_Neg(1,1,n,l,r);
}
if(ch[0]=='Q')
{
int l=read(),r=read(),w=read();
printf("%d\n",(Query(1,1,n,l,r).s[w]+MOD)%MOD);
}
}
return 0;
}
【BZOJ2962】序列操作(线段树)的更多相关文章
- 【题解】P4247 [清华集训]序列操作(线段树修改DP)
[题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...
- 【BZOJ2962】序列操作 线段树
[BZOJ2962]序列操作 Description 有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反 ...
- 【BZOJ-2962】序列操作 线段树 + 区间卷积
2962: 序列操作 Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 678 Solved: 246[Submit][Status][Discuss] ...
- 【BZOJ-1858】序列操作 线段树
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1961 Solved: 991[Submit][Status ...
- BZOJ 1858: [Scoi2010]序列操作( 线段树 )
略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...
- 【bzoj1858】[Scoi2010]序列操作 线段树区间合并
题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...
- Luogu P2572 [SCOI2010]序列操作 线段树。。
咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...
- 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树
正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...
- bzoj1858[Scoi2010]序列操作 线段树
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 3079 Solved: 1475[Submit][Statu ...
- [SCOI2010]序列操作 线段树
---题面--- 题解: 在考场上打的这道题,出人意料的很快就打完了?! 直接用线段树,维护几个东西: 1,lazy标记 : 表示区间赋值 2,mark标记:表示区间翻转 3,l1:前缀最长连续的1的 ...
随机推荐
- c语言数字图像处理(五):空间滤波
空间滤波原理 使用大小为m*n的滤波器对大小为M*N的图像进行线性空间滤波,将滤波器模板乘以图像中对应灰度值,相加得模板中心灰度值 a = (m-1)/2, b = (n-1)/2 若f(x+s, y ...
- Tree - AdaBoost with sklearn source code
In the previous post we addressed some issue of decision tree, including instability, lack of smooth ...
- Hyperledger Fabric(v1.1.0)编译时遇到的问题
Hyperledger Fabric(v1.1.0)编译时遇到的问题 0. 编译过程的坑 编译时,按照如下顺序编译 make release,编译源码生成二进制文件 make docker,生成一系列 ...
- dp算法之有代价的最短路径
题目:有代价的最短路径 题目介绍:如下图所示,现在平面上有N个点,此时N=7,每个点可能和其他点相连,相连的线有一定权值,求出从0点到N-1点的消耗权值的最小值. 分析:用动态规划的思路来解决,每一点 ...
- 关于如何使用dubbo管理控制台的一些感想
1.起因 因java项目需要准备安装一个dubbo-admin管理后台研究使用,无奈github上并没有看到dubbo-admin的目录着实让人着急.百度引擎上一些文章也不靠谱!真是浪费时间!所以又 ...
- +new Date()的用法
var s=+newDate(); var s=+newDate(); 解释如下:=+是不存在的; +new Date()是一个东西; +相当于.valueOf(); 看到回复补充一下.getTi ...
- 软件工程第十周psp
1.PSP表格 2.进度条 3.饼状图 4.折线图
- [buaa-SE-2017]个人作业-回顾
个人作业-回顾 提问题的博客:[buaa-SE-2017]个人作业-Week1 Part1: 问题的解答和分析 1.1 问题:根据书中"除了前20的学校之外,计科和软工没有区别"所 ...
- 校友聊---Sprint计划会议总结
1.产品需求及索引卡: 校友聊的软件我们计划分三步进行设计实现功能:文字聊天.语音聊天.视频聊天.首先第一步我们要实现文字聊天这个功能. 经过调研讨论之后,确定了产品的几个需求:在局域网内实现通信要依 ...
- 进阶系列(5)—— C#XML使用
一.XML介绍 XML文件是一种常用的文件格式,例如WinForm里面的app.config以及Web程序中的web.config文件,还有许多重要的场所都有它的身影.Xml是Internet环境中跨 ...