【BZOJ2962】序列操作(线段树)

题面

BZOJ

题解

设\(s[i]\)表示区间内选择\(i\)个数的乘积的和

考虑如何向上合并?

\(s[k]=\sum_{i=0}^klson.s[i]*rson.s[k-i]\)

相当于是一个卷积形式

区间取相反数是一个很好处理的操作

把所有的\(s[k],k\&1=1\)取相反数就好了

区间加法?

假设我们已经知道了原来的所有的答案

现在的数从原来的\(a[1],a[2],....\)

变成了\(a[1]+x,a[2]+x,....\)

把乘积的形式拆开

发现变成了组合数乘\(x\)的若干次幂再乘上原来\(s[i]\)的值得形式

直接修改即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 19940417
#define MAX 55555
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int C[MAX][25];
int n,Q;
struct Node
{
int s[25];
int tag,neg;
}t[MAX<<2];
Node operator+(Node a,Node b)
{
Node c;c.tag=c.neg=0;
for(int i=0;i<=20;++i)
{
c.s[i]=0;
for(int j=0;j<=i;++j)
c.s[i]=(c.s[i]+1ll*a.s[j]*b.s[i-j]%MOD)%MOD;
}
return c;
}
void Build(int now,int l,int r)
{
t[now].s[0]=1;
if(l==r){t[now].s[1]=read();return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=t[lson]+t[rson];
}
void putneg(int now)
{
for(int i=1;i<=20;i+=2)t[now].s[i]=(-t[now].s[i]+MOD)%MOD;
t[now].neg^=1;t[now].tag=(-t[now].tag+MOD)%MOD;
}
void puttag(int now,int l,int r,int w)
{
int s[25];memset(s,0,sizeof(s));
for(int i=1;i<=20;++i)
{
int pw=1;
for(int j=i;j>=0;--j,pw=1ll*pw*w%MOD)
s[i]=(s[i]+1ll*t[now].s[j]*C[r-l+1-j][i-j]%MOD*pw%MOD)%MOD;
}
for(int i=1;i<=20;++i)
t[now].s[i]=(s[i]+MOD)%MOD;
t[now].tag=(t[now].tag+MOD+w)%MOD;
}
void pushdown(int now,int l,int r)
{
if(t[now].neg)
{
putneg(lson);putneg(rson);
t[now].neg^=1;
}
if(t[now].tag)
{
int mid=(l+r)>>1;
puttag(lson,l,mid,t[now].tag);
puttag(rson,mid+1,r,t[now].tag);
t[now].tag=0;
}
}
void Modify_Neg(int now,int l,int r,int L,int R)
{
if(L<=l&&r<=R){putneg(now);return;}
pushdown(now,l,r);
int mid=(l+r)>>1;
if(L<=mid)Modify_Neg(lson,l,mid,L,R);
if(R>mid)Modify_Neg(rson,mid+1,r,L,R);
t[now]=t[lson]+t[rson];
}
void Modify_pls(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){puttag(now,l,r,w);return;}
pushdown(now,l,r);
int mid=(l+r)>>1;
if(L<=mid)Modify_pls(lson,l,mid,L,R,w);
if(R>mid)Modify_pls(rson,mid+1,r,L,R,w);
t[now]=t[lson]+t[rson];
}
Node Query(int now,int l,int r,int L,int R)
{
if(l==L&&r==R)return t[now];
pushdown(now,l,r);
int mid=(l+r)>>1;
if(R<=mid)return Query(lson,l,mid,L,R);
if(L>mid)return Query(rson,mid+1,r,L,R);
return Query(lson,l,mid,L,mid)+Query(rson,mid+1,r,mid+1,R);
}
int main()
{
n=read();Q=read();
C[1][0]=C[1][1]=C[0][0]=1;
for(int i=2;i<=n;++i)
{
C[i][0]=1;
for(int j=1;j<=min(i,22);++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
Build(1,1,n);
char ch[5];
while(Q--)
{
scanf("%s",ch);
if(ch[0]=='I')
{
int l=read(),r=read(),w=read();
Modify_pls(1,1,n,l,r,w);
}
if(ch[0]=='R')
{
int l=read(),r=read();
Modify_Neg(1,1,n,l,r);
}
if(ch[0]=='Q')
{
int l=read(),r=read(),w=read();
printf("%d\n",(Query(1,1,n,l,r).s[w]+MOD)%MOD);
}
}
return 0;
}

【BZOJ2962】序列操作(线段树)的更多相关文章

  1. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

  2. 【BZOJ2962】序列操作 线段树

    [BZOJ2962]序列操作 Description 有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反 ...

  3. 【BZOJ-2962】序列操作 线段树 + 区间卷积

    2962: 序列操作 Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 678  Solved: 246[Submit][Status][Discuss] ...

  4. 【BZOJ-1858】序列操作 线段树

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1961  Solved: 991[Submit][Status ...

  5. BZOJ 1858: [Scoi2010]序列操作( 线段树 )

    略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...

  6. 【bzoj1858】[Scoi2010]序列操作 线段树区间合并

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  7. Luogu P2572 [SCOI2010]序列操作 线段树。。

    咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...

  8. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  9. bzoj1858[Scoi2010]序列操作 线段树

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 3079  Solved: 1475[Submit][Statu ...

  10. [SCOI2010]序列操作 线段树

    ---题面--- 题解: 在考场上打的这道题,出人意料的很快就打完了?! 直接用线段树,维护几个东西: 1,lazy标记 : 表示区间赋值 2,mark标记:表示区间翻转 3,l1:前缀最长连续的1的 ...

随机推荐

  1. c语言数字图像处理(五):空间滤波

    空间滤波原理 使用大小为m*n的滤波器对大小为M*N的图像进行线性空间滤波,将滤波器模板乘以图像中对应灰度值,相加得模板中心灰度值 a = (m-1)/2, b = (n-1)/2 若f(x+s, y ...

  2. Tree - AdaBoost with sklearn source code

    In the previous post we addressed some issue of decision tree, including instability, lack of smooth ...

  3. Hyperledger Fabric(v1.1.0)编译时遇到的问题

    Hyperledger Fabric(v1.1.0)编译时遇到的问题 0. 编译过程的坑 编译时,按照如下顺序编译 make release,编译源码生成二进制文件 make docker,生成一系列 ...

  4. dp算法之有代价的最短路径

    题目:有代价的最短路径 题目介绍:如下图所示,现在平面上有N个点,此时N=7,每个点可能和其他点相连,相连的线有一定权值,求出从0点到N-1点的消耗权值的最小值. 分析:用动态规划的思路来解决,每一点 ...

  5. 关于如何使用dubbo管理控制台的一些感想

    1.起因 ​因java项目需要准备安装一个dubbo-admin管理后台研究使用,无奈github上并没有看到dubbo-admin的目录着实让人着急.百度引擎上一些文章也不靠谱!真是浪费时间!所以又 ...

  6. +new Date()的用法

    var s=+newDate();   var s=+newDate(); 解释如下:=+是不存在的; +new Date()是一个东西; +相当于.valueOf(); 看到回复补充一下.getTi ...

  7. 软件工程第十周psp

    1.PSP表格 2.进度条 3.饼状图 4.折线图

  8. [buaa-SE-2017]个人作业-回顾

    个人作业-回顾 提问题的博客:[buaa-SE-2017]个人作业-Week1 Part1: 问题的解答和分析 1.1 问题:根据书中"除了前20的学校之外,计科和软工没有区别"所 ...

  9. 校友聊---Sprint计划会议总结

    1.产品需求及索引卡: 校友聊的软件我们计划分三步进行设计实现功能:文字聊天.语音聊天.视频聊天.首先第一步我们要实现文字聊天这个功能. 经过调研讨论之后,确定了产品的几个需求:在局域网内实现通信要依 ...

  10. 进阶系列(5)—— C#XML使用

    一.XML介绍 XML文件是一种常用的文件格式,例如WinForm里面的app.config以及Web程序中的web.config文件,还有许多重要的场所都有它的身影.Xml是Internet环境中跨 ...