OpenCV学习(38) 人脸识别(3)
前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容:
http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html
LDA算法细节参考:
http://www.cnblogs.com/mikewolf2002/p/3435750.html
程序代码:
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp" #include <iostream>
#include <fstream>
#include <sstream> using namespace cv;
using namespace std; static Mat norm_0_255(InputArray _src)
{
Mat src = _src.getMat();
Mat dst;
switch(src.channels())
{
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
} static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';')
{
std::ifstream file(filename.c_str(), ifstream::in);
if (!file)
{
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty())
{
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
} int main(int argc, const char *argv[])
{ string fn_csv = string("facerec_at_t.txt");
vector<Mat> images;
vector<int> labels; try
{
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e)
{
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
exit(1);
} if(images.size() <= 1)
{
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
} int height = images[0].rows; Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1]; images.pop_back();
labels.pop_back(); Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
int predictedLabel = model->predict(testSample); string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl; Mat eigenvalues = model->getMat("eigenvalues");
Mat W = model->getMat("eigenvectors");
Mat mean = model->getMat("mean");
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows))); for (int i = 0; i < min(16, W.cols); i++)
{
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
Mat ev = W.col(i).clone();
Mat grayscale = norm_0_255(ev.reshape(1, height));
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
imshow(format("fisherface_%d", i), cgrayscale); } for(int num_component = 0; num_component < min(16, W.cols); num_component++)
{ Mat ev = W.col(num_component);
Mat projection = subspaceProject(ev, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(ev, mean, projection);
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction); } while(1)
waitKey(0);
return 0;
}
从代码中我们可以看到,最大的区别就是创建人脸识别模式类时候,调用的函数不一样,其它代码和特征脸识别的代码一样,对于train和predict函数来说,调用方式完全一样,只是底层的具体算法细节不一样。
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
下面是Fisher人脸识别类的train函数,从中可以看到,函数会先调用PCA算法进行降维,之后再执行LDA算法,求得Fisher特征值和特征向量。注意投影矩阵是PCA算法的特征向量和LDA算法特征向量的乘积。
// 先用PCA算法降维perform a PCA and keep (N-C) components
PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));
// 把数据投影到 PCA空间,再对该数据执行LDA算法
LDA lda(pca.project(data),labels, _num_components);
// 保存总的均值向量
_mean = pca.mean.reshape(1,1);
_labels = labels.clone();
lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);
//计算投影矩阵=pca.eigenvectors * lda.eigenvectors.
// Note: OpenCV stores the eigenvectors by row, so we need to transpose it!
gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);
//把原始矩阵投影到新的投影空间
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
在程序中,我们仍然使用AT&T Facedatabase数据库的图片,原教程中推荐用Yale Facedatabase A,但是它的图像格式是gif,OpenCV不支持,只好放弃。
程序代码:FirstOpenCV34
OpenCV学习(38) 人脸识别(3)的更多相关文章
- OpenCV学习(37) 人脸识别(2)
在前面一篇教程中,我们学习了OpenCV中基于特征脸的人脸识别的代码实现,我们通过代码 Ptr<FaceRecognizer> model = createEigenFaceR ...
- OpenCV学习(36) 人脸识别(1)
本文主要参考OpenCV人脸识别教程:http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html 1.OpenCV ...
- OpenCV学习(40) 人脸识别(4)
在人脸识别模式类中,还实现了一种基于LBP直方图的人脸识别方法.LBP图的原理参照:http://www.cnblogs.com/mikewolf2002/p/3438698.html 在 ...
- 【从零学习openCV】IOS7人脸识别实战
前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于Opencv快速实现人脸识别(完整版)
无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...
随机推荐
- 003 Ajax中传输格式为XML
一: 1.优缺点 二:大纲 1.结构设计 三:程序 1.xml <?xml version="1.0" encoding="utf-8"?> < ...
- Xshell拖拽上传文件插件
lrzsz是一款在linux里可代替ftp上传和下载的程序.在linux中支持直接拖拽上传的插件:同时也支持rz和sz进行命令上传和下载. 插件安装 yum -y install lrzsz 上传(r ...
- Mac 上自带TFTP Server 软件的使用
搬瓦工搭建SS教程 1.TFTP协议 简单文件传输协议Trivial File Transfer Protocol (TFTP)是一个基于UDP协议的简单的.低开销的文件传输协议,允许客户端get或者 ...
- c#程序员机试题
一.题目: 有一数组: int[] arr = new int[] { 48,1,3,55,15,29,12,33,26,41,56,32}; 1.求出最大值 2.按每个数字的10位数分组(说明:0~ ...
- PHP的钩子实现解析
钩子是编程里一个常见的概念,非常的重要.它使得系统变得非常容易拓展(而不用理解其内部的实现机理,这样可以减少很多工作量).只要有一个钩子样本,能很容易仿照第一个钩子快速的编写第二个钩子,这里对钩子进行 ...
- luoguP5108 仰望半月的夜空 [官方?]题解 后缀数组 / 后缀树 / 后缀自动机 + 线段树 / st表 + 二分
仰望半月的夜空 题解 可以的话,支持一下原作吧... 这道题数据很弱..... 因此各种乱搞估计都是能过的.... 算法一 暴力长度然后判断判断,复杂度\(O(n^3)\) 期望得分15分 算法二 通 ...
- BZOJ 4213 贪吃蛇 上下界费用流 网络流
https://darkbzoj.cf/problem/4213 https://www.cnblogs.com/DaD3zZ-Beyonder/p/5733326.html 题目描述 dbzoj又崩 ...
- 6.13校内互测 (DP 带权二分 斜率优化)
丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...
- BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集
2342: [Shoi2011]双倍回文 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1123 Solved: 408 题目连接 http://w ...
- MySQL内核整理(一)
一.在共享表空间(系统表空间)中,innodb会维护一些系统信息:1.Internal data dictionary2.Rollback segments3.undo space4.insert b ...