OpenCV学习(38) 人脸识别(3)
前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容:
http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html
LDA算法细节参考:
http://www.cnblogs.com/mikewolf2002/p/3435750.html
程序代码:
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp" #include <iostream>
#include <fstream>
#include <sstream> using namespace cv;
using namespace std; static Mat norm_0_255(InputArray _src)
{
Mat src = _src.getMat();
Mat dst;
switch(src.channels())
{
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
} static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';')
{
std::ifstream file(filename.c_str(), ifstream::in);
if (!file)
{
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty())
{
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
} int main(int argc, const char *argv[])
{ string fn_csv = string("facerec_at_t.txt");
vector<Mat> images;
vector<int> labels; try
{
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e)
{
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
exit(1);
} if(images.size() <= 1)
{
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
} int height = images[0].rows; Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1]; images.pop_back();
labels.pop_back(); Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
int predictedLabel = model->predict(testSample); string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl; Mat eigenvalues = model->getMat("eigenvalues");
Mat W = model->getMat("eigenvectors");
Mat mean = model->getMat("mean");
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows))); for (int i = 0; i < min(16, W.cols); i++)
{
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
Mat ev = W.col(i).clone();
Mat grayscale = norm_0_255(ev.reshape(1, height));
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
imshow(format("fisherface_%d", i), cgrayscale); } for(int num_component = 0; num_component < min(16, W.cols); num_component++)
{ Mat ev = W.col(num_component);
Mat projection = subspaceProject(ev, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(ev, mean, projection);
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction); } while(1)
waitKey(0);
return 0;
}
从代码中我们可以看到,最大的区别就是创建人脸识别模式类时候,调用的函数不一样,其它代码和特征脸识别的代码一样,对于train和predict函数来说,调用方式完全一样,只是底层的具体算法细节不一样。
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
下面是Fisher人脸识别类的train函数,从中可以看到,函数会先调用PCA算法进行降维,之后再执行LDA算法,求得Fisher特征值和特征向量。注意投影矩阵是PCA算法的特征向量和LDA算法特征向量的乘积。
// 先用PCA算法降维perform a PCA and keep (N-C) components
PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));
// 把数据投影到 PCA空间,再对该数据执行LDA算法
LDA lda(pca.project(data),labels, _num_components);
// 保存总的均值向量
_mean = pca.mean.reshape(1,1);
_labels = labels.clone();
lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);
//计算投影矩阵=pca.eigenvectors * lda.eigenvectors.
// Note: OpenCV stores the eigenvectors by row, so we need to transpose it!
gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);
//把原始矩阵投影到新的投影空间
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
在程序中,我们仍然使用AT&T Facedatabase数据库的图片,原教程中推荐用Yale Facedatabase A,但是它的图像格式是gif,OpenCV不支持,只好放弃。
程序代码:FirstOpenCV34
OpenCV学习(38) 人脸识别(3)的更多相关文章
- OpenCV学习(37) 人脸识别(2)
在前面一篇教程中,我们学习了OpenCV中基于特征脸的人脸识别的代码实现,我们通过代码 Ptr<FaceRecognizer> model = createEigenFaceR ...
- OpenCV学习(36) 人脸识别(1)
本文主要参考OpenCV人脸识别教程:http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html 1.OpenCV ...
- OpenCV学习(40) 人脸识别(4)
在人脸识别模式类中,还实现了一种基于LBP直方图的人脸识别方法.LBP图的原理参照:http://www.cnblogs.com/mikewolf2002/p/3438698.html 在 ...
- 【从零学习openCV】IOS7人脸识别实战
前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于Opencv快速实现人脸识别(完整版)
无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...
随机推荐
- servlet文件下载实例剖析
package mypack; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; ...
- CSUOJ 1868 潜在好友
Description 小X在搬砖写一个论坛,这个时候老板突然想到一个功能,让小X今天赶快实现.大概就是如果某个人是你好友的好友那么他的头像上面会有特殊的标志.小X想不到较好的办法来解决如何验证两个人 ...
- 层级目录结构的Makefile递归编译方法
层级目录结构的Makefile编写方法. 层级目录结构的Makefile编写方法. 0.前言 1.如何编译整个工程 2.过滤每层不需要编译的目录 3将所有输出文件定向输出. 0.前言 假如现在有这样一 ...
- JAVAEE——SpringMVC第二天:高级参数绑定、@RequestMapping、方法返回值、异常处理、图片上传、Json交互、实现RESTful、拦截器
1. 课前回顾 https://www.cnblogs.com/xieyupeng/p/9093661.html 2. 课程计划 1.高级参数绑定 a) 数组类型的参数绑定 b) List类型的绑定 ...
- 在qemu环境中用gdb调试Linux内核
简介 对用户态进程,利用gdb调试代码是很方便的手段.而对于内核态的问题,可以利用crash等工具基于coredump文件进行调试.其实我们也可以利用一些手段对Linux内核代码进行gdb调试,qem ...
- mongdb 拓展的下载地址和编译安装(php)
下载地址:https://pecl.php.net/package/mongodb 编译安装: $ tar zxvf mongodb-mongodb-php-driver-<commit_id& ...
- sql find duplicate
SELECT GUID, COUNT(*) FROM xx GROUP BY GUID HAVING COUNT(*) > 1; SELECT name, email, COUNT(*) FRO ...
- Linux-数据库4
存储引擎 什么是存储引擎? mysql中建的库是文件夹,建的表是文件.文件有不同的类型,数据库中的表也有不同的类型,表的类型不同,会对应mysql不同的存取机制,表类型又称为存储引擎. 存储引擎说白了 ...
- SKLearn数据集API(二)
注:本文是人工智能研究网的学习笔记 计算机生成的数据集 用于分类任务和聚类任务,这些函数产生样本特征向量矩阵以及对应的类别标签集合. 数据集 简介 make_blobs 多类单标签数据集,为每个类分配 ...
- Python168的学习笔记5
关于对csv文件的操作. python标准库中有csv的库,使用非常方便. import csv with open('pingan.csv','rb') as rf: reader = csv.re ...