Codeforces 225C Barcode(矩阵上DP)
题目链接:http://codeforces.com/contest/225/problem/C
题目大意:
给出一个矩阵,只有两种字符'.'和'#',问最少修改多少个点才能让每一列的字符一致,且字符一致的连续的列的宽度在x和y之间。
解题思路:
先求出每列‘.’和'#'的前缀和,sum[i][0]表示前i列'#' 的前缀和,sum[i][1]表示前i列'.' 的前缀和 ,因为修改要求每列都保持一直,其实我们可以将每列都当成一个点来看,那样我们就相当于是在一维序列上操作了。
dp[i][0]表示最后一列为'.'的最优解,dp[i][1]表示最后一列为'#'的最优解 。
那么我们可以得到状态转移方程:
dp[i+j][0]=min(dp[i+j][0],dp[i][1]+sum[i+j][0]-sum[i][0]),x=<j<=y,0<=i<=m
dp[i+j][1]=min(dp[i+j][1],dp[i][0]+sum[i+j][1]-sum[i][1]),x=<j<=y,0<=i<=m
其实很好理解,dp[i+j][0]表示第i+j列为'.',那么可以由相差为j的第i列为'#'的状态推导过来,同时要将i+1~j的'#'都变为'.'
dp[i+j][1]同理。
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<string.h>
#include<cctype>
#include<math.h>
#include<stdlib.h>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define lc(a) (a<<1)
#define rc(a) (a<<1|1)
#define MID(a,b) ((a+b)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define clr(arr,val) memset(arr,val,sizeof(arr))
#define _for(i,start,end) for(int i=start;i<=end;i++)
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef long long LL;
const int N=3e3+;
const LL INF64=1e18;
const int INF=0x3f3f3f3f;
const double eps=1e-; int dp[N][]; //dp[i][0]表示最后一列为'.'的最优解,dp[i][1]表示最后一列为'#'的最优解
int sum[N][]; //sum[i][0]表示前i列'#' 的前缀和,sum[i][1]表示前i列'.' 的前缀和 int main(){
memset(dp,0x3f,sizeof(dp));
FAST_IO;
int n,m,x,y;
cin>>n>>m>>x>>y;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
char x;
cin>>x;
if(x=='#')
sum[j][]++;
else
sum[j][]++;
}
}
for(int i=;i<=m;i++){
sum[i][]+=sum[i-][];
sum[i][]+=sum[i-][];
} dp[][]=dp[][]=;
for(int i=;i<=m;i++){
for(int j=x;j<=y;j++){
dp[i+j][]=min(dp[i+j][],dp[i][]+sum[i+j][]-sum[i][]);
dp[i+j][]=min(dp[i+j][],dp[i][]+sum[i+j][]-sum[i][]);
}
}
cout<<min(dp[m][],dp[m][])<<endl;
return ;
}
Codeforces 225C Barcode(矩阵上DP)的更多相关文章
- CodeForces 225C Barcode DP
也是一道dp ,想到了就会觉得很巧妙 矩阵中只有白块和黑块,要求repaint后满足下述条件: 每列一种颜色 根据输入范围x, y 要求条纹宽度在[x, y] 之间 数据范围: n, m, x and ...
- Codeforces 918D MADMAX 图上dp 组合游戏
题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...
- CF思维联系–CodeForces - 225C. Barcode(二路动态规划)
ACM思维题训练集合 Desciption You've got an n × m pixel picture. Each pixel can be white or black. Your task ...
- Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性
https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...
- DAG上dp思想
DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...
- 从《彩色圆环》一题探讨一类环上dp的解法
清橙A1202 bzoj2201 bsoj4074 试题来源 2010中国国家集训队命题答辩 问题描述 小A喜欢收集宝物.一天他得到了一个圆环,圆环上有N颗彩色宝石,闪闪发光.小A很爱惜这个圆环,天天 ...
- Codevs 1305 Freda的道路(矩阵乘法 DP优化)
1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...
- 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)
洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...
- [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)
题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...
随机推荐
- Luogu1309 瑞士轮(分治,归并排序)
Luogu1309 瑞士轮(分治,归并排序) Description 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然 ...
- (转)教你完全理解IO流里的 read(),read(byte[]),read(byte[],int off,int len)以及write
背景:对于IO部分,总是感觉很虚,不能很好的理解其中的要义,其实仔细分析,掌握其中的规律,一切都会看起来十分的自然. 1 理解 1.1 从头总结 长期以来,java中的InputStream Outp ...
- 团体程序设计天梯赛 L3-004. 肿瘤诊断
数组的大小不能开太大,否则会出现段错误 用bfs而不用dfs,dfs存储太多中间过程,会超内存 #include <stdio.h> #include <stdlib.h> # ...
- bzoj 刷题计划~_~
bzoj 2818 两个互质的数的gcd=1,所以他们同时乘一个素数那么他们的gcd=这个素数,所以枚举素数p找n/p以内有多少对互质数,用欧拉函数. bzoj 2809 可并堆,对于每一个子树显然是 ...
- UDP ------ UDP IPPROTO_UDPLITE 参数
介绍 传统的 UDP 通信对整个报文进行校验 UDP-LITE 通信则可以设置校验的长度,适用于可以接受轻微的报文内容出错,比如视频数据:传统的 UDP 由于对整个报文校验,一旦出现报文数据出错就会被 ...
- SpringBoot(十三):springboot 小技巧
原文出处: 纯洁的微笑 一些springboot小技巧.小知识点. 初始化数据 我们在做测试的时候经常需要初始化导入一些数据,如何来处理呢?会有两种选择,一种是使用Jpa,另外一种是Spring JD ...
- caffe 用faster rcnn 训练自己的数据 遇到的问题
1 . 怎么处理那些pyx和.c .h文件 在lib下有一些文件为.pyx文件,遇到不能import可以cython 那个文件,然后把lib文件夹重新make一下. 遇到.c 和 .h一样的操作. 2 ...
- hadoop基础-SequenceFile详解
hadoop基础-SequenceFile详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.SequenceFile简介 1>.什么是SequenceFile 序列文件 ...
- [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆
Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...
- 洛谷P2766 最长递增子序列问题
https://www.luogu.org/problemnew/show/P2766 注:题目描述有误,本题求的是最长不下降子序列 方案无限多时输出 n 网络流求方案数,长见识了 第一问: DP 同 ...